|
本帖最后由 天山草 于 2025-2-15 10:05 编辑
- Clear["Global`*"];
- x = 115/100; y = 242/100; z = 179/100;
- W = NSolve[{2 r^3 x y z + r^2 (x^2 y^2 + x^2 z^2 + y^2 z^2) -
- x^2 y^2 z^2 == 0, r > 0}, {r}, 100] // Flatten;
- r = r /. W; Print["r = ", r];
- tx = Sqrt[x^2 - r^2]; Print["tx = ", N[tx, 100]];
- ty = Sqrt[y^2 - r^2]; Print["ty = ", N[ty, 100]];
- tz = Sqrt[z^2 - r^2]; Print["tz = ", N[tz, 100]];
- L = 2 (tx + ty + tz); Print["L = ", N[L, 100]];
复制代码
上面这个是用 mathematica 计算内切圆半径的程序。算出圆半径以后别的就好算了。
内切圆半径 r = 0.8005388192691153322169278163957643666132854363277856003737140361790085294640445720062274138021046686;
各切线长分别是:
tx = 0.8256134681818185422570255744458584180469278984035455354486184781511147887366972241055345433917570298;
ty = 2.283755152997626122372696231586643096372075327304196678393596164704167339678892241020086740322335223;
tz = 1.601011429953955918500217324692424544019062607152427795303837822022504747820896625557954494676686053。
三角形周长是:
L = 9.420760102266801166259878261449852116876131665720340018292104929755573752472972181367151556781556612。
圆半径 r 与内心到三个顶点的距离 x、y、z 满足一个三次方程 2 r^3 x y z + r^2 (x^2 y^2 + x^2 z^2 + y^2 z^2) - x^2 y^2 z^2 = 0,
此方程是【悠闲数学娱乐论坛】的 hejoseph 给出的,但是他没有给出推导过程。
|
|