|
已知实数 x,y,p,q 满足 2x^2+3p^2=2y^2+3q^2=(xq-yp)^2=6,求 (x^2+y^2)(p^2+q^2).
思路:令x=√3cosα,y=√3cosθ,则p=√2sinα,q=√2sinθ.
将其代入(xq-yp)^2=6,得[√6(sinθcosα-cosθsinα)]^2=6,
即[sin(θ-α)]^2=1,或cos(θ-α)=0,或θ=kπ+π/2+α,k∈Z.
∴ (x^2+y^2)(p^2+q^2)=6[(cosα)^2+(cosθ)^2][(sinα)^2+(sinθ)^2]
=6[(cosα)^2+(sinα)^2][(sinα)^2+(cosα)^2]=6. |
|