数学中国

 找回密码
 注册
搜索
热搜: 活动 交友 discuz
查看: 99|回复: 25

\(孬种搅局1\Huge\color{red}{\textbf{超穷数存在于}\mathbb{N}\textbf{之外}}\)

[复制链接]
发表于 2025-4-28 06:24 | 显示全部楼层 |阅读模式
本帖最后由 elim 于 2025-4-28 15:41 编辑

根据皮亚诺公理, 除了\(0\)没有前趋, 其他自然数
均有前趋后继, 但若假定有超穷自然数, 则最小
超穷自然数\(v\)就没有前趋. 因为比它小的自然数
必为有限自然数, 这些数的后继仍有限, 故没有
一个是\(v\)的前趋, 可见主张超穷自然数存在就是
主张存在第二个没有前趋的自然数.是反皮亚诺
的认知.责问孬种哪个有限数的后继是最小超
穷数?

康托的超穷数存在于自然数之外.
蠢疯的骚搬运凸显孬种白痴之贱.
发表于 2025-4-28 06:25 | 显示全部楼层
elim根本读不懂ChatGPT的回答
ChatGPT并不否定\(v=\displaystyle\lim_{n \to \infty} n\)的存在性。就在elim截图的最下方,ChatGPT有〖如果你想深入探讨“有没有无穷大的数”这样的概念,在超限数、超实数(如超自然数、非标准分析)中,有些结构里是允许引入“无穷大”的,但那就己经超岀普通自然数的范畴啦〗这样的说法!我也问过ChatGPT『如果\(v=\displaystyle\lim_{n \to \infty} n\)不存在,是不是意味着康托尔的集合论与超穷数理不自洽?』ChatGPT说康括尔的超穷数理论是自洽的,并且用途很广。由于elim对自然数的认知一直停留在小学三年级以下,那时根本就不讨论自然数的基数,序数这些“超岀普通自然数范畴”的问题。我们知道在自然数列中基数和序数是一致的。由于自然数列是单调递增数列。所以,虽然\(v=\displaystyle\lim_{n \to \infty} n\)和\(v-j=\displaystyle\lim_{n \to \infty} n-j\)的值都是∞,但它们的确又是不同的基数和序数。因为对\(v-j=\displaystyle\lim_{n \to \infty} n-j\)和\(v=\displaystyle\lim_{n \to \infty} n\)存在性的讨论,本身就不在“普通自然数”范畴内进行的嘛!如果按elim机械的理解\(v、v-1、…v-k\)都不存在,那么自然数集\(\mathbb{N}\)就不可能是无限集,同时自然数就应该存在最大数(也就是那个大于它前面但又不等于无穷的自然数),这可与自然数中无最大数矛盾。这就是把认为\(v=\displaystyle\lim_{n \to \infty} n\)不存在不自洽之处!
回复 支持 反对

使用道具 举报

发表于 2025-4-28 06:26 | 显示全部楼层
elim根本读不懂ChatGPT的回答
ChatGPT并不否定\(v=\displaystyle\lim_{n \to \infty} n\)的存在性。就在elim截图的最下方,ChatGPT有〖如果你想深入探讨“有没有无穷大的数”这样的概念,在超限数、超实数(如超自然数、非标准分析)中,有些结构里是允许引入“无穷大”的,但那就己经超岀普通自然数的范畴啦〗这样的说法!我也问过ChatGPT『如果\(v=\displaystyle\lim_{n \to \infty} n\)不存在,是不是意味着康托尔的集合论与超穷数理不自洽?』ChatGPT说康括尔的超穷数理论是自洽的,并且用途很广。由于elim对自然数的认知一直停留在小学三年级以下,那时根本就不讨论自然数的基数,序数这些“超岀普通自然数范畴”的问题。我们知道在自然数列中基数和序数是一致的。由于自然数列是单调递增数列。所以,虽然\(v=\displaystyle\lim_{n \to \infty} n\)和\(v-j=\displaystyle\lim_{n \to \infty} n-j\)的值都是∞,但它们的确又是不同的基数和序数。因为对\(v-j=\displaystyle\lim_{n \to \infty} n-j\)和\(v=\displaystyle\lim_{n \to \infty} n\)存在性的讨论,本身就不在“普通自然数”范畴内进行的嘛!如果按elim机械的理解\(v、v-1、…v-k\)都不存在,那么自然数集\(\mathbb{N}\)就不可能是无限集,同时自然数就应该存在最大数(也就是那个大于它前面但又不等于无穷的自然数),这可与自然数中无最大数矛盾。这就是把认为\(v=\displaystyle\lim_{n \to \infty} n\)不存在不自洽之处!
回复 支持 反对

使用道具 举报

发表于 2025-4-28 10:37 | 显示全部楼层

elim认为【根据皮亚诺公理, 除了0没有前趋, 其他自然数均有前趋后继, 但若假定有超穷自然数, 则最小超穷自然数\(v\)就没有前趋. 因为比它小的自然数必为有限自然数, 这些数的后继仍有限, 故没有一个是\(v\)的前趋, 可见主张超穷自然数存在就是主张存在第二个没有前趋的自然数.是反皮亚诺的认识.】elim的这段陈述是在没有弄清楚\(\infty\)的定义基础上的糊涂认识。那什么是\(\infty\)呢?现行教科书是这样定义的
【定义】:若整序变量\(x_n\),由某项开始,其绝对值变成且保持着大于预先给定的任意大数E>0,当n>\(N_E\)时恒有|\(x_n\)|>\(N_E\),则称变量\(x_n\)为无穷大(参见菲赫全哥尔茨《数学分析原理》两卷四册版第一卷第一分册P59页无穷大的定义)
由于自然数集\(\mathbb{N}\)无限集,所以对任意预先给定的任意大自然数\(x\)必有\(\mathbb{N}=\{n|n\le x,n∈N\}\)\(\cup\{ n|n>x,n∈N\}\)。其中\(\mathbb{N}_e=\{n|n\le x,n∈N\}\)叫自然数集\(\mathbb{N}\)的一个截段,\(\mathbb{N}_e\)是有限集,且\(\mathbb{N}_e\)中的每个数都是有限数。而\(\mathbb{N}_∞=\{ n|n>x,n∈N\}\)是无限集,\(\mathbb{N}_∞\)的元素的值大多数都等于无穷。由于\(x\)  预先定的无论怎样大的自然数,所以\(\mathbb{N}_∞=\)\(\{x+1, x+2,…,v-j=\displaystyle\lim_{n \to \infty}n-j\)\)\((j\in\mathbb{N}_e)\)中的元素都是由皮亚诺公理(Peano axioms)第二条逻辑确定的自然数。同理,\(v+j=\displaystyle\lim_{n \to \infty}n+j\)\((j\in\mathbb{N}_e)\)也是由皮亚诺公理(Peano axioms)第二条逻辑确定的自然数。至此,我们证明了自然数\(v\mp j=\displaystyle\lim_{n \to \infty}n\mp j\)\((j\in\mathbb{N}_e)\)都是皮亚诺公理(Peano axioms)意义下的自然数。它们不仅客观存在,而助彼此互异。所以,自然数\(v=\displaystyle\lim_{n \to \infty} n\)既不是最小的超穷,也不是最大的超穷数。\(v=\displaystyle\lim_{n \to \infty} n\)的前趋是\(v-1=\displaystyle\lim_{n \to \infty} n-1\);\(v=\displaystyle\lim_{n \to \infty} n\)的后继是\(v+1=\displaystyle\lim_{n \to \infty} n+1\)。
也正因为如此,我们说自然数集中的数没有最大,只有更大。
【特别强调】:elim或ChatGPT所说的【自然数皆有限数】与自然数集是无限集不自然洽。即如果【自然数皆有限数】那么自然数集就不可能是无限集!

回复 支持 反对

使用道具 举报

发表于 2025-4-28 11:18 | 显示全部楼层

elim认为【根据皮亚诺公理, 除了0没有前趋, 其他自然数均有前趋后继, 但若假定有超穷自然数, 则最小超穷自然数\(v\)就没有前趋. 因为比它小的自然数必为有限自然数, 这些数的后继仍有限, 故没有一个是\(v\)的前趋, 可见主张超穷自然数存在就是主张存在第二个没有前趋的自然数.是反皮亚诺的认识.】elim的这段陈述是在没有弄清楚\(\infty\)的定义基础上的糊涂认识。那什么是\(\infty\)呢?现行教科书是这样定义的
【定义】:若整序变量\(x_n\),由某项开始,其绝对值变成且保持着大于预先给定的任意大数E>0,当n>\(N_E\)时恒有|\(x_n\)|>\(N_E\),则称变量\(x_n\)为无穷大(参见菲赫全哥尔茨《数学分析原理》两卷四册版第一卷第一分册P59页无穷大的定义)
由于自然数集\(\mathbb{N}\)无限集,所以对任意预先给定的任意大自然数\(x\)必有\(\mathbb{N}=\{n|n\le x,n∈N\}\)\(\cup\{ n|n>x,n∈N\}\)。其中\(\mathbb{N}_e=\{n|n\le x,n∈N\}\)叫自然数集\(\mathbb{N}\)的一个截段,\(\mathbb{N}_e\)是有限集,且\(\mathbb{N}_e\)中的每个数都是有限数。而\(\mathbb{N}_∞=\{ n|n>x,n∈N\}\)是无限集,\(\mathbb{N}_∞\)的元素的值大多数都等于无穷。由于\(x\)  预先定的无论怎样大的自然数,所以\(\mathbb{N}_∞=\)\(\{x+1, x+2,…,v-j=\displaystyle\lim_{n \to \infty}n-j\)\)\((j\in\mathbb{N}_e)\)中的元素都是由皮亚诺公理(Peano axioms)第二条逻辑确定的自然数。同理,\(v+j=\displaystyle\lim_{n \to \infty}n+j\)\((j\in\mathbb{N}_e)\)也是由皮亚诺公理(Peano axioms)第二条逻辑确定的自然数。至此,我们证明了自然数\(v\mp j=\displaystyle\lim_{n \to \infty}n\mp j\)\((j\in\mathbb{N}_e)\)都是皮亚诺公理(Peano axioms)意义下的自然数。它们不仅客观存在,而助彼此互异。所以,自然数\(v=\displaystyle\lim_{n \to \infty} n\)既不是最小的超穷,也不是最大的超穷数。\(v=\displaystyle\lim_{n \to \infty} n\)的前趋是\(v-1=\displaystyle\lim_{n \to \infty} n-1\);\(v=\displaystyle\lim_{n \to \infty} n\)的后继是\(v+1=\displaystyle\lim_{n \to \infty} n+1\)。
也正因为如此,我们说自然数集中的数没有最大,只有更大。
【特别强调】:elim或ChatGPT所说的【自然数皆有限数】与自然数集是无限集不自然洽。即如果【自然数皆有限数】那么自然数集就不可能是无限集!

回复 支持 反对

使用道具 举报

发表于 2025-4-28 11:37 | 显示全部楼层

放你娘的臭狗屁,你的主帖放了些什么狗屁,老子证明了无穷自然数、超穷自然数都在皮亚诺意义下的自然数集中,还有什么【顾左右而言他否定不了主贴】!?
elim认为【根据皮亚诺公理, 除了0没有前趋, 其他自然数均有前趋后继, 但若假定有超穷自然数, 则最小超穷自然数\(v\)就没有前趋. 因为比它小的自然数必为有限自然数, 这些数的后继仍有限, 故没有一个是\(v\)的前趋, 可见主张超穷自然数存在就是主张存在第二个没有前趋的自然数.是反皮亚诺的认识.】elim的这段陈述是在没有弄清楚\(\infty\)的定义基础上的糊涂认识。那什么是\(\infty\)呢?现行教科书是这样定义的
【定义】:若整序变量\(x_n\),由某项开始,其绝对值变成且保持着大于预先给定的任意大数E>0,当n>\(N_E\)时恒有|\(x_n\)|>\(N_E\),则称变量\(x_n\)为无穷大(参见菲赫全哥尔茨《数学分析原理》两卷四册版第一卷第一分册P59页无穷大的定义)
由于自然数集\(\mathbb{N}\)无限集,所以对任意预先给定的任意大自然数\(x\)必有\(\mathbb{N}=\{n|n\le x,n∈N\}\)\(\cup\{ n|n>x,n∈N\}\)。其中\(\mathbb{N}_e=\{n|n\le x,n∈N\}\)叫自然数集\(\mathbb{N}\)的一个截段,\(\mathbb{N}_e\)是有限集,且\(\mathbb{N}_e\)中的每个数都是有限数。而\(\mathbb{N}_∞=\{ n|n>x,n∈N\}\)是无限集,\(\mathbb{N}_∞\)的元素的值大多数都等于无穷。由于\(x\)  预先定的无论怎样大的自然数,所以\(\mathbb{N}_∞=\)\(\{x+1, x+2,…,v-j=\displaystyle\lim_{n \to \infty}n-j\)\)\((j\in\mathbb{N}_e)\)中的元素都是由皮亚诺公理(Peano axioms)第二条逻辑确定的自然数。同理,\(v+j=\displaystyle\lim_{n \to \infty}n+j\)\((j\in\mathbb{N}_e)\)也是由皮亚诺公理(Peano axioms)第二条逻辑确定的自然数。至此,我们证明了自然数\(v\mp j=\displaystyle\lim_{n \to \infty}n\mp j\)\((j\in\mathbb{N}_e)\)都是皮亚诺公理(Peano axioms)意义下的自然数。它们不仅客观存在,而助彼此互异。所以,自然数\(v=\displaystyle\lim_{n \to \infty} n\)既不是最小的超穷,也不是最大的超穷数。\(v=\displaystyle\lim_{n \to \infty} n\)的前趋是\(v-1=\displaystyle\lim_{n \to \infty} n-1\);\(v=\displaystyle\lim_{n \to \infty} n\)的后继是\(v+1=\displaystyle\lim_{n \to \infty} n+1\)。
也正因为如此,我们说自然数集中的数没有最大,只有更大。
【特别强调】:elim或ChatGPT所说的【自然数皆有限数】与自然数集是无限集不自然洽。即如果【自然数皆有限数】那么自然数集就不可能是无限集!

回复 支持 反对

使用道具 举报

发表于 2025-4-28 12:22 | 显示全部楼层

elim认为【根据皮亚诺公理, 除了0没有前趋, 其他自然数均有前趋后继, 但若假定有超穷自然数, 则最小超穷自然数\(v\)就没有前趋. 因为比它小的自然数必为有限自然数, 这些数的后继仍有限, 故没有一个是\(v\)的前趋, 可见主张超穷自然数存在就是主张存在第二个没有前趋的自然数.是反皮亚诺的认识.】elim的这段陈述是在没有弄清楚\(\infty\)的定义基础上的糊涂认识。那什么是\(\infty\)呢?现行教科书是这样定义的
【定义】:若整序变量\(x_n\),由某项开始,其绝对值变成且保持着大于预先给定的任意大数E>0,当n>\(N_E\)时恒有|\(x_n\)|>\(N_E\),则称变量\(x_n\)为无穷大(参见菲赫全哥尔茨《数学分析原理》两卷四册版第一卷第一分册P59页无穷大的定义)
由于自然数集\(\mathbb{N}\)无限集,所以对任意预先给定的任意大自然数\(x\)必有\(\mathbb{N}=\{n|n\le x,n∈N\}\)\(\cup\{ n|n>x,n∈N\}\)。其中\(\mathbb{N}_e=\{n|n\le x,n∈N\}\)叫自然数集\(\mathbb{N}\)的一个截段,\(\mathbb{N}_e\)是有限集,且\(\mathbb{N}_e\)中的每个数都是有限数。而\(\mathbb{N}_∞=\{ n|n>x,n∈N\}\)是无限集,\(\mathbb{N}_∞\)的元素的值大多数都等于无穷。由于\(x\)  预先定的无论怎样大的自然数,所以\(\mathbb{N}_∞=\)\(\{x+1, x+2,…,v-j=\displaystyle\lim_{n \to \infty}n-j\)\)\((j\in\mathbb{N}_e)\)中的元素都是由皮亚诺公理(Peano axioms)第二条逻辑确定的自然数。同理,\(v+j=\displaystyle\lim_{n \to \infty}n+j\)\((j\in\mathbb{N}_e)\)也是由皮亚诺公理(Peano axioms)第二条逻辑确定的自然数。至此,我们证明了自然数\(v\mp j=\displaystyle\lim_{n \to \infty}n\mp j\)\((j\in\mathbb{N}_e)\)都是皮亚诺公理(Peano axioms)意义下的自然数。它们不仅客观存在,而助彼此互异。所以,自然数\(v=\displaystyle\lim_{n \to \infty} n\)既不是最小的超穷,也不是最大的超穷数。\(v=\displaystyle\lim_{n \to \infty} n\)的前趋是\(v-1=\displaystyle\lim_{n \to \infty} n-1\);\(v=\displaystyle\lim_{n \to \infty} n\)的后继是\(v+1=\displaystyle\lim_{n \to \infty} n+1\)。
也正因为如此,我们说自然数集中的数没有最大,只有更大。
【特别强调】:elim或ChatGPT所说的【自然数皆有限数】与自然数集是无限集不自然洽。即如果【自然数皆有限数】那么自然数集就不可能是无限集!
回复 支持 反对

使用道具 举报

发表于 2025-4-28 13:35 | 显示全部楼层
你的主题思想不就是自然数集中不存在无穷自然数和超穷自然数吗?我根据皮亚诺公理笫二条“每个确定的自然数\(a\)都有唯确定的后继\(a+1\)并皿\(a+1\)也是自然数”,证明了无穷数和超穷数的存在(即\(\mathbb{N}\ne\phi\),为何叫做搅局?为何叫做顾左右而言其它?并且也指出了你的【自然数皆有限数】与自然数数集是无限集不自洽,并且你的\(v=\displaystyle\lim_{n \to \infty} n\)不存在无自然数基础理论的支撑!可以说处处击中你的要害,你再放肆撒泼都没用!
回复 支持 反对

使用道具 举报

发表于 2025-4-28 15:46 | 显示全部楼层

       elim认为【根据皮亚诺公理, 除了0没有前趋, 其他自然数均有前趋后继, 但若假定有超穷自然数, 则最小超穷自然数\(v\)就没有前趋. 因为比它小的自然数必为有限自然数, 这些数的后继仍有限, 故没有一个是\(v\)的前趋, 可见主张超穷自然数存在就是主张存在第二个没有前趋的自然数.是反皮亚诺的认识.】elim的这段陈述是在没有弄清楚\(\infty\)的定义基础上的糊涂认识。那什么是\(\infty\)呢?现行教科书是这样定义的
       【定义】:若整序变量\(x_n\),由某项开始,其绝对值变成且保持着大于预先给定的任意大数E>0,当n>\(N_E\)时恒有|\(x_n\)|>\(N_E\),则称变量\(x_n\)为无穷大(参见菲赫全哥尔茨《数学分析原理》两卷四册版第一卷第一分册P59页无穷大的定义)
       由于自然数集\(\mathbb{N}\)无限集,所以对任意预先给定的任意大自然数\(x\)必有\(\mathbb{N}=\{n|n\le x,n∈N\}\)\(\cup\{ n|n>x,n∈N\}\)。其中\(\mathbb{N}_e=\{n|n\le x,n∈N\}\)叫自然数集\(\mathbb{N}\)的一个截段,\(\mathbb{N}_e\)是有限集,且\(\mathbb{N}_e\)中的每个数都是有限数。而\(\mathbb{N}_∞=\{ n|n>x,n∈N\}=\)\(\{x+1,x+2,…,x+k,…\displaystyle\lim_{n \to \infty}n-2,…\)\( \displaystyle\lim_{n \to \infty}n-1,\) \(\displaystyle\lim_{n \to \infty} n\) \(\displaystyle\lim_{n \to \infty} n+1,…\}\)是无限集,\(\mathbb{N}_∞\)中最小的元素是\(x+1\)。
       也因为\(x\)  预先定的无论怎样大的自然数,所以\(\mathbb{N}_∞=\)\(\{x+1, x+2,…,v-j=\displaystyle\lim_{n \to \infty}n-j\}\)\((j\in\mathbb{N}_e)\)中的元素都是由皮亚诺公理(Peano axioms)第二条逻辑确定的自然数。同理,\(v+j=\displaystyle\lim_{n \to \infty}n+j\)\((j\in\mathbb{N}_e)\)也是由皮亚诺公理(Peano axioms)第二条逻辑确定的自然数。
       至此,我们证明了自然数\(v\mp j=\displaystyle\lim_{n \to \infty}n\mp j\)\((j\in\mathbb{N}_e)\)都是皮亚诺公理(Peano axioms)意义下的自然数。它们不仅客观存在,而且彼此互异。所以,自然数\(v=\displaystyle\lim_{n \to \infty} n\)既不是最小的超穷,也不是最大的超穷数。\(v=\displaystyle\lim_{n \to \infty} n\)的前趋是\(v-1=\displaystyle\lim_{n \to \infty} n-1\);\(v=\displaystyle\lim_{n \to \infty} n\)的后继是\(v+1=\displaystyle\lim_{n \to \infty} n+1\)。
也正因为如此,我们说自然数集中的数没有最大,只有更大。
       【特别强调】:elim或ChatGPT所说的【自然数皆有限数】与自然数集是无限集不自然洽。即如果【自然数皆有限数】那么自然数集就不可能是无限集!

回复 支持 反对

使用道具 举报

 楼主| 发表于 2025-4-28 16:17 | 显示全部楼层
本帖最后由 elim 于 2025-4-28 01:19 编辑

孬种驴滚堵不了最小超穷数无前趋漏洞

我已发新主题应对孬种的此等搅局
回复 支持 反对

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

Archiver|手机版|小黑屋|数学中国 ( 京ICP备05040119号 )

GMT+8, 2025-4-30 16:43 , Processed in 0.081924 second(s), 15 queries .

Powered by Discuz! X3.4

Copyright © 2001-2020, Tencent Cloud.

快速回复 返回顶部 返回列表