|
对于elim这种泼妇,你谎言千遍仍是谎言!在\(\mathbb{N}_{\infty}\)中,最小的超穷数是那个预先给定的怎样大的自然数(有限数)\(x\)的后继\(x+1\)。这都证明过多少次了,你从不读贴,怪得了谁?对你这种泼妇无论多少次证明\(v=\displaystyle\lim_{n \to \infty}n\)的存在性,以及\(v=\displaystyle\lim_{n \to \infty}n\)既不是皮亚诺自然数集的最小元,也不是皮亚诺自然数集的最大元。\(v=\displaystyle\lim_{n \to \infty}n\)既有前趋\(v-1=\displaystyle\lim_{n \to \infty}n-1\),也有后继\(v+1=\displaystyle\lim_{n \to \infty}n+1\)。但总认为【孬种驴滚堵不了最小超穷数无前趋漏洞.我已发新主题应对孬种的此等搅局】,elim自始至终都说不出皮亚诺算术系统中的漏洞在那理?为什么那里是漏洞?一味删、发宿帖来彰显自己的伟大,耍赖撒泼真不是东西。
elim认为【根据皮亚诺公理, 除了0没有前趋, 其他自然数均有前趋后继, 但若假定有超穷自然数, 则最小超穷自然数\(v\)就没有前趋. 因为比它小的自然数必为有限自然数, 这些数的后继仍有限, 故没有一个是\(v\)的前趋, 可见主张超穷自然数存在就是主张存在第二个没有前趋的自然数.是反皮亚诺的认识.】elim的这段陈述是在没有弄清楚\(\infty\)的定义基础上的糊涂认识。那什么是\(\infty\)呢?现行教科书是这样定义的
【定义】:若整序变量\(x_n\),由某项开始,其绝对值变成且保持着大于预先给定的任意大数E>0,当n>\(N_E\)时恒有|\(x_n\)|>\(N_E\),则称变量\(x_n\)为无穷大(参见菲赫全哥尔茨《数学分析原理》两卷四册版第一卷第一分册P59页无穷大的定义)
由于自然数集\(\mathbb{N}\)无限集,所以对任意预先给定的任意大自然数\(x\)必有\(\mathbb{N}=\{n|n\le x,n∈N\}\)\(\cup\{ n|n>x,n∈N\}\)。其中\(\mathbb{N}_e=\{n|n\le x,n∈N\}\)叫自然数集\(\mathbb{N}\)的一个截段,\(\mathbb{N}_e\)是有限集,且\(\mathbb{N}_e\)中的每个数都是有限数。而\(\mathbb{N}_∞=\{ n|n>x,n∈N\}=\)\(\{x+1,x+2,…,x+k,…\displaystyle\lim_{n \to \infty}n-2,…\)\( \displaystyle\lim_{n \to \infty}n-1,\) \(\displaystyle\lim_{n \to \infty} n\) \(\displaystyle\lim_{n \to \infty} n+1,…\}\)是无限集,\(\mathbb{N}_∞\)中最小的元素是\(x+1\)。
也因为\(x\) 预先定的无论怎样大的自然数,所以\(\mathbb{N}_∞=\)\(\{x+1, x+2,…,v-j=\displaystyle\lim_{n \to \infty}n-j\}\)\((j\in\mathbb{N}_e)\)中的元素都是由皮亚诺公理(Peano axioms)第二条逻辑确定的自然数。同理,\(v+j=\displaystyle\lim_{n \to \infty}n+j\)\((j\in\mathbb{N}_e)\)也是由皮亚诺公理(Peano axioms)第二条逻辑确定的自然数。
至此,我们证明了自然数\(v\mp j=\displaystyle\lim_{n \to \infty}n\mp j\)\((j\in\mathbb{N}_e)\)都是皮亚诺公理(Peano axioms)意义下的自然数。它们不仅客观存在,而且彼此互异。所以,自然数\(v=\displaystyle\lim_{n \to \infty} n\)既不是最小的超穷,也不是最大的超穷数。\(v=\displaystyle\lim_{n \to \infty} n\)的前趋是\(v-1=\displaystyle\lim_{n \to \infty} n-1\);\(v=\displaystyle\lim_{n \to \infty} n\)的后继是\(v+1=\displaystyle\lim_{n \to \infty} n+1\)。
也正因为如此,我们说自然数集中的数没有最大,只有更大。
【特别强调】:elim或ChatGPT所说的【自然数皆有限数】与自然数集是无限集不自然洽。即如果【自然数皆有限数】那么自然数集就不可能是无限集!
|
|