数学中国

 找回密码
 注册
搜索
热搜: 活动 交友 discuz
查看: 1223|回复: 14

孬种搅局01\(\Huge\textbf{定理}:\,\underset{n\to\infty}{\lim}n\not\in\mathbb{N}\)

[复制链接]
发表于 2025-5-18 14:06 | 显示全部楼层 |阅读模式
本帖最后由 elim 于 2025-10-30 12:35 编辑

从分析的观点看这个定理是显然的:因为\(\{n\}\)
非柯西序列, \(\displaystyle\lim_{n\to\infty}n\)不存在, 当然就不是自然数.
这个定理是要指出,在更底层的集论意义下
\(\displaystyle\lim_{n\to\infty}n\) 仍然不是自然数. 在集论中自然数由递
归式给出 \(\small 0=\phi, n+1=n\cup\{n\}=\{0,\ldots,n\}\)
自然数间的大小关系等价于真扩集/子集关系.
由此即知自然数序列作为严格增序列的极限是
\(\displaystyle\lim_{n\to\infty}n=\bigcup_{n=1}^\infty\{0,\ldots,n\}=\mathbb{N}=\sup\mathbb{N}\).
这里第一个等号从集合升列的极限的集论公式
得到,最后一个等号自然数的集论序关系约定
及上确界定义给出. 由自然数的集论构造, 自然
数皆\(\mathbb{N}\)的真子集,故
\(\color{red}{\mathbb{N}\not\in\mathbb{N}}\).
【定理】\(\displaystyle\lim_{n\to\infty}n=\mathbb{N}=\sup\mathbb{N}\not\in\mathbb{N}\) 的以上论
\(\quad\)证以皮亚诺公理为据. 自然数的集论表达式,
\(\quad \mathbb{N}\)无最大元论断需要全部皮亚诺公理支撑.

【注记】康托的基数理论及序数理论是对皮亚
\(\quad\)诺的自然数理论从有穷基数全体向一般基数,
\(\quad\)从有限序数全体向一般序数的扩展. 皮亚诺
\(\quad\)意义下的自然数全体是\(\mathbb{N}\). 一切不在\(\mathbb{N}\)中的元
\(\quad\)素必有不合皮亚诺公理之处. 康托从来没有称
\(\quad\)他的超穷数为自然数. 也没有任何书著称\(\mathbb{N}\)含
\(\quad\)非有穷元素.



发表于 2025-5-18 14:37 | 显示全部楼层

       从elim先生2025-5-18 06:39所发帖子的12行\(\displaystyle\lim_{n \to \infty}n=\)\(\displaystyle\bigcup_{n=1}^{\infty}\{0,1,…n\}\)\(=\mathbb{N}=sup\mathbb{N}\)和第17行【定理】\(\displaystyle\lim_{n \to \infty}n=\)\(\mathbb{N}=sup\mathbb{N}\)\(\notin\mathbb{N}\)立得【定理】的表达实质是\(\mathbb{N}\notin\mathbb{N}\)!所以,elim先生自证了所给命题\(v=\displaystyle\lim_{n \to \infty}n=sup\mathbb{N}\)\(\notin\mathbb{N}\)是个伪命题!另外皮亚诺意义下的自然数全体是康托尔实正整数集,由于冯\(\cdot\)依曼自然数定义中\(\displaystyle\lim_{n \to \infty}n=\mathbb{N}\)是一个确定的数 .根据皮亚诺公理第二条“每一个确定的自然数\(a\),都具有确定的后继数\(a' ,a'\)也是自然数”,所以\(\displaystyle\lim_{n \to \infty}n\)的后继\(\displaystyle\lim_{n \to \infty}n+1\)也是自然数。是的,康托从来没有称他的超穷数为自然数。但康托尔又在什么地方说了\(\displaystyle\lim_{n \to \infty}n\)不是自然数呢?
回复 支持 反对

使用道具 举报

发表于 2025-5-18 18:35 | 显示全部楼层
本帖最后由 春风晚霞 于 2025-5-18 19:50 编辑


一、自然数集的定义:
       【定义】称称满足如下条件的集合N为自然数集:
       (1)、\(0\in N\)
       (2)、\(\forall x\in N\),其后继\(x^+\in N\)
       (3)、\(\forall x\in N\),有\(x^+\ne 0\)
       (4)、\(\forall x,y\in N\),如果\(x\ne y,则有x^+\ne y^+\)
       (5)、\(\forall A\subset N\),如果满足下列两个条件:①\(0\in N\);②、\(\forall x\in A\)有\(x^+\in A\).则有\(A=N\)(参见清华大学张峰 陶然著《集合论基础教程》P82页定义5.1.2) .
       由于该定义的条件与皮亚诺公理完全一致,故亦可简单地说满足皮亚诺公理的集合称着自然数集。
二、数与数相等;集合与集合相等都具有自反性;
       elim先生的【由自然数的集论构造, 自然数皆\(\mathbb{N}\)的真子集,故\(\mathbb{N}\notin\mathbb{N}\)】不自洽!因为自然数的构造有三种基本形式:①皮亚诺公理式;②康托尔实正整数生成式;③冯﹒诺依曼生成式 .\(\mathbb{N}\notin\mathbb{N}\)表达式在皮亚诺体系和康托尔实正整数体系中不自洽是显然的,在此不再赘述。elim先生的【\(\displaystyle\lim_{n \to \infty}n=\)\(\displaystyle\bigcup_{n=1}^{\infty}\)\(\{1,2,,…\}=\)\(\mathbb{N}\)\(=sup\mathbb{N}\)】应属冯.诺依曼定义式 .其实,就算在诺依曼定义式中虽然有\(n=\{1,2,…,n-1\}\)这种集合与数不分,\(\subset与\in\)不分的表达方式,但仍无\(\mathbb{N}\notin\mathbb{N}\)这样的不自洽表达式.这是因为\(\notin\)左边的\(\mathbb{N}\)与右边的\(\mathbb{N}\)都是冯.诺依曼定义下的同一自然数集,所以无论从数的相等关系,还是集合的相等(即互含)关系看,都应满足自反性(也就是\(\mathbb{N}=\mathbb{N}\),而决无\(\mathbb{N}\notin\mathbb{N}\)之理 .至于正则公理,那是讲的集合中元素与集合的关系,而不是对同一集合自反关系的否定!

回复 支持 1 反对 0

使用道具 举报

发表于 2025-5-18 20:09 | 显示全部楼层
\[\lim_{n\to\infty}n=+\infty\]
回复 支持 反对

使用道具 举报

发表于 2025-5-19 14:05 | 显示全部楼层
本帖最后由 春风晚霞 于 2025-5-19 15:42 编辑


       我不管你是翘楚还是白痴,更不管你的逻辑是底层逻辑还是顶层逻辑。你的【\(v=\displaystyle\lim_{n \to \infty}n=\)\(\mathbb{N}=\)\(sup\mathbb{N}\)\(\notin\)\(\mathbb{N}\)】就是混帐逻辑!现证明\(\displaystyle\lim_{n \to \infty}n\in\mathbb{N}\)\(\ne\sup\mathbb{N}\)!
       【证明:】根据冯\(\cdot\)诺依曼自然数构成法后继的定义:对于集合\(x\)称集合\(x\cup\{x\}\)为\(x\)的后继 (参见清华大学张峰 陶然著《集合论基础教程》P84页定义5.2.1) .\(v=\displaystyle\lim_{n \to \infty}n\in\{0,1,2,…(\displaystyle\lim_{n \to \infty}n-1),\displaystyle\lim_{n \to \infty}n\}=\)\(\displaystyle\lim_{n \to \infty}n+1\),所以elim先生的【\(v=\displaystyle\lim_{n \to \infty}n=\)\(\mathbb{N}=\)\(sup\mathbb{N}\)\(\notin\)\(\mathbb{N}\)】逻辑就是混帐逻辑!当然我们可根据单增集列\(0=\phi\),\(1=\{0\}\),\(2=\{0,1\}\),…\(\displaystyle\lim_{n \to \infty}n=\{0,1,…(\displaystyle\lim_{n \to \infty}n-1)\}\),\(\displaystyle\lim_{n \to \infty}n+1=\{0,1,…\displaystyle\lim_{n \to \infty}n\}\),证得\(sup\mathbb{N}=\displaystyle\lim_{n \to \infty}n+1\in\displaystyle\lim_{n \to \infty}n+2\)!【证毕】
       故此只有畜生不如的白痴才会认为\(\mathbb{N}\notin\mathbb{N}\)是自洽的!
回复 支持 反对

使用道具 举报

发表于 2025-5-19 18:04 | 显示全部楼层

       我不管你是翘楚还是白痴,更不管你的逻辑是底层逻辑还是顶层逻辑。你的【\(v=\displaystyle\lim_{n \to \infty}n=\)\(\mathbb{N}=\)\(sup\mathbb{N}\)\(\notin\)\(\mathbb{N}\)】就是混帐逻辑!现证明\(\displaystyle\lim_{n \to \infty}n\in\mathbb{N}\)\(\ne\sup\mathbb{N}\)!
       【证明:】根据冯\(\cdot\)诺依曼自然数构成法后继的定义:对于集合\(x\)称集合\(x\cup\{x\}\)为\(x\)的后继 (参见清华大学张峰 陶然著《集合论基础教程》P84页定义5.2.1) .\(v=\displaystyle\lim_{n \to \infty}n\in\{0,1,2,…(\displaystyle\lim_{n \to \infty}n-1),\displaystyle\lim_{n \to \infty}n\}=\)\(\displaystyle\lim_{n \to \infty}n+1\),所以elim先生的【\(v=\displaystyle\lim_{n \to \infty}n=\)\(\mathbb{N}=\)\(sup\mathbb{N}\)\(\notin\)\(\mathbb{N}\)】逻辑就是混帐逻辑!当然我们可根据单增集列\(0=\phi\),\(1=\{0\}\),\(2=\{0,1\}\),…\(\displaystyle\lim_{n \to \infty}n=\{0,1,…(\displaystyle\lim_{n \to \infty}n-1)\}\),\(\displaystyle\lim_{n \to \infty}n+1=\{0,1,…\displaystyle\lim_{n \to \infty}n\}\),证得\(sup\mathbb{N}=\displaystyle\lim_{n \to \infty}n+1\in\displaystyle\lim_{n \to \infty}n+2\)!【证毕】
       故此只有畜生不如的白痴才会认为\(\mathbb{N}\notin\mathbb{N}\)是自洽的!
回复 支持 反对

使用道具 举报

发表于 2025-5-19 19:06 | 显示全部楼层
由皮亚诺公理得自然数的递归集(\(\dagger\))\(0=\phi\),\(n+1=n\cup\{n\}=\{0,…,n\}\)得\(\displaystyle\lim_{n \to \infty}n\in\)\(\{0,1,2,…,\displaystyle\lim_{n \to \infty}n\}=\)\(\mathbb{N}=\)\(\displaystyle\lim_{n \to \infty} (n+1)\),【自然数皆为\(\mathbb{N}\)的真子集】尚等证明,不能作为论据!你说了半天,并没有说清楚什么是自然数?为什么\(\displaystyle\lim_{n \to \infty}n\)不是自然数?难道这就是你的底层逻辑?
回复 支持 反对

使用道具 举报

发表于 2025-10-31 06:44 | 显示全部楼层

        elim于2025-10-30 13:38发表新主题《\(\lim n\in\mathbb{N}\)\(\implies\lim n\notin\mathbb{N}\)》该主题的主帖认为【\(\displaystyle\lim_{n \to \infty}n=m\)\(\in\mathbb{N}\),则对n>M=m+1令\(n\to\infty\)得\(\displaystyle\lim_{n \to \infty}n<\)\(m+1=M\le\displaystyle\lim_{n \to \infty}n=m\),\(m+1\le m\)\(\implies m\notin\mathbb{N}\)\(\implies\displaystyle\lim_{n \to \infty}n\)\(\notin\mathbb{N}\)】elim论述之余,一如既往地对春风晚霞发动攻击,【顽瞎目测蕴含顽瞎目测的否定,此乃嗜屎报应.】【滚驴白痴真身被验明,孬贼船漏不打一处来.】
        elim的这个主题及主贴既向我们充分地展示了elim反数学的丑恶嘴脸,也充分暴露了elim嗜屎如命,滚驴白痴的肮脏心理。同时更进一步展示了elim不懂数学论证、不懂自然数、不懂无穷数学白痴的事实。现在我们结合《\(\lim n\in\mathbb{N}\)\(\implies\lim n\notin\mathbb{N}\)》这个主题重点讲讲什么是论证。
        所谓证明是指〖从命题的题设出发,根据已知的定义(如自然数的定义)、公理(如皮亚诺公理)、定理(如自然数集是无限集定理),逐步推导出未知(即结论)的逻辑演译过程〗,所以要证明命题【\(\lim n\in\mathbb{N}\)\(\implies\lim n\notin\mathbb{N}\)】,我们们必须从〖\(\lim n\in\mathbb{N}\)〗这个\(\color{red}{题设}\)条件出发,根据皮亚诺公理(犹其是皮亚诺公理第二条),去逻辑演译出\(\lim n\notin\mathbb{N}\)这个结论。所以,正确地演译应是〖若\(\lim n\in\mathbb{N}\)\(\implies\lim n+1\in\mathbb{N}\)(理论根据是皮亚诺公理第二条:每一个确定的自然数a,都有一个确定的后继数a'(=a+1),a'(=a+1)也是自然数.〗于是问题就转化成如\(m+1\)是不是自然数的问题。如果\(m+1\)是自然数(即皮亚诺公理对\(\displaystyle\lim_{n \to \infty}n\)是否成立的问题)。
        现在我们证明命题:皮亚诺公理对\(\displaystyle\lim_{n \to \infty}n\)依然成立。
        证明:因为在现行数学理论中只有形如\(j\cdot\omega\)\((j\in\mathbb{N})\)这样的数没有直接前趋只有后继(即极限序数),而\(\displaystyle\lim_{n \to \infty}n\)不是\(\omega\)的直前,所以\(\displaystyle\lim_{n \to \infty}n+1\ne\omega\),又因\(\omega\)的后继是\(\omega+1\),所以\(\displaystyle\lim_{n \to \infty}n+1\in\mathbb{N}\).所以皮亚诺公理对自然数\(\displaystyle\lim_{n \to \infty}n\)成立.【证毕】。
        注意:我们在此\(\displaystyle\lim_{n \to \infty}n\in\mathbb{N}\)的基础上亦可证明\(\displaystyle\lim_{n \to \infty}2n\)、\(\displaystyle\lim_{n \to \infty}2^n\)、\(\displaystyle\lim_{n \to \infty}10^n\)、……是自然数!证明的合理性请参见康托尔《超穷数理论基础》P75页第7—8行.
Elim,由问题的一般(项)通过极限的手段探测无穷,这是数学上常规有效方法,这种方法应用于一切步及极限动算的始终。所以你反对目测,其实质就是反对现行数学行之有效地论证方法。也因为elim反对目测,所以elim才有\(\displaystyle\lim_{n \to \infty}n=Sup\mathbb{N}\)、\(\displaystyle\lim_{n \to \infty}n=Max\mathbb{N}\)、……这样一些荒谬结论。
        elim纯粹数学是通过严谨的证明获得的,而不是靠耍流氓、耍无赖得到的。郑告民科领袖elim数学切忌撒谎,因为数学中没有戈陪尔效应,谎言千遍,仍是谎言!至此谁嗜吃屎,谁的【白痴真身被验明,孬贼船漏不打一处来】你固然不想承认,然网络诸友想必还是心中有数的!
回复 支持 反对

使用道具 举报

发表于 2025-10-31 07:05 | 显示全部楼层

        elim于2025-10-30 13:38发表新主题《\(\lim n\in\mathbb{N}\)\(\implies\lim n\notin\mathbb{N}\)》该主题的主帖认为【\(\displaystyle\lim_{n \to \infty}n=m\)\(\in\mathbb{N}\),则对n>M=m+1令\(n\to\infty\)得\(\displaystyle\lim_{n \to \infty}n<\)\(m+1=M\le\displaystyle\lim_{n \to \infty}n=m\),\(m+1\le m\)\(\implies m\notin\mathbb{N}\)\(\implies\displaystyle\lim_{n \to \infty}n\)\(\notin\mathbb{N}\)】elim论述之余,一如既往地对春风晚霞发动攻击,【顽瞎目测蕴含顽瞎目测的否定,此乃嗜屎报应.】【滚驴白痴真身被验明,孬贼船漏不打一处来.】
        elim的这个主题及主贴既向我们充分地展示了elim反数学的丑恶嘴脸,也充分暴露了elim嗜屎如命,滚驴白痴的肮脏心理。同时更进一步展示了elim不懂数学论证、不懂自然数、不懂无穷数学白痴的事实。现在我们结合《\(\lim n\in\mathbb{N}\)\(\implies\lim n\notin\mathbb{N}\)》这个主题重点讲讲什么是论证。
所谓证明是指〖从命题的题设出发,根据已知的定义(如自然数的定义)、公理(如皮亚诺公理)、定理(如自然数集是无限集定理),逐步推导出未知(即结论)的逻辑演译过程〗,所以要证明命题【\(\lim n\in\mathbb{N}\)\(\implies\lim n\notin\mathbb{N}\)】,我们们必须从〖\(\lim n\in\mathbb{N}\)〗这个\(\color{red}{题设}\)条件出发,根据皮亚诺公理(犹其是皮亚诺公理第二条),去逻辑演译出\(\lim n\notin\mathbb{N}\)这个结论。所以,正确地演译应是〖若\(\lim n\in\mathbb{N}\)\(\implies\lim n+1\in\mathbb{N}\)(理论根据是皮亚诺公理第二条:每一个确定的自然数a,都有一个确定的后继数a'(=a+1),a'(=a+1)也是自然数.〗于是问题就转化成如\(m+1\)是不是自然数的问题。如果\(m+1\)是自然数(即皮亚诺公理对\(\displaystyle\lim_{n \to \infty}n\)是否成立的问题),
        现在我们证明命题:皮亚诺公理对\(\displaystyle\lim_{n \to \infty}n\)依然成立。
        证明:因为在现行数学理论中只有形如\(j\cdot\omega\)\((j\in\mathbb{N})\)这样的数没有直接前趋只有后继(即极限序数),而\(\displaystyle\lim_{n \to \infty}n\)不是\(\omega\)的直前,所以\(\displaystyle\lim_{n \to \infty}n+1\ne\omega\),又因\(\omega\)的后继是\(\omega+1\),所以\(\displaystyle\lim_{n \to \infty}n+1\in\mathbb{N}\).所以皮亚诺公理对自然数\(\displaystyle\lim_{n \to \infty}n\)成立.【证毕】。
        注意:我们在此\(\displaystyle\lim_{n \to \infty}n\in\mathbb{N}\)的基础上亦可证明\(\displaystyle\lim_{n \to \infty}2n\)、\(\displaystyle\lim_{n \to \infty}2^n\)、\(\displaystyle\lim_{n \to \infty}10^n\)、……是自然数!证明的合理性请参见康托尔《超穷数理论基础》P75页第7—8行.
Elim,由问题的一般(项)通过极限的手段探测无穷,这是数学上常规有效方法,这种方法应用于一切步及极限动算的始终。所以你反对目测,其实质就是反对现行数学行之有效地论证方法。也因为elim反对目测,所以elim才有\(\displaystyle\lim_{n \to \infty}n=Sup\mathbb{N}\)、\(\displaystyle\lim_{n \to \infty}n=Max\mathbb{N}\)、……这样一些荒谬结论。
        elim纯粹数学是通过严谨的证明获得的,而不是靠耍流氓、耍无赖得到的。郑告民科领袖elim数学切忌撒谎,因为数学中没有戈陪尔效应,谎言千遍,仍是谎言!至此谁嗜吃屎,谁的【白痴真身被验明,孬贼船漏不打一处来】你固然不想承认,然网络诸友想必还是心中有数的!

回复 支持 反对

使用道具 举报

发表于 2025-10-31 08:28 | 显示全部楼层

        elim于2025-10-30 13:38发表新主题《\(\lim n\in\mathbb{N}\)\(\implies\lim n\notin\mathbb{N}\)》该主题的主帖认为【\(\displaystyle\lim_{n \to \infty}n=m\)\(\in\mathbb{N}\),则对n>M=m+1令\(n\to\infty\)得\(\displaystyle\lim_{n \to \infty}n<\)\(m+1=M\le\displaystyle\lim_{n \to \infty}n=m\),\(m+1\le m\)\(\implies m\notin\mathbb{N}\)\(\implies\displaystyle\lim_{n \to \infty}n\)\(\notin\mathbb{N}\)】elim论述之余,一如既往地对春风晚霞发动攻击,【顽瞎目测蕴含顽瞎目测的否定,此乃嗜屎报应.】【滚驴白痴真身被验明,孬贼船漏不打一处来.】
        elim的这个主题及主贴既向我们充分地展示了elim反数学的丑恶嘴脸,也充分暴露了elim嗜屎如命,滚驴白痴的肮脏心理。同时更进一步展示了elim不懂数学论证、不懂自然数、不懂无穷数学白痴的事实。现在我们结合《\(\lim n\in\mathbb{N}\)\(\implies\lim n\notin\mathbb{N}\)》这个主题重点讲讲什么是论证。
        所谓证明是指〖从命题的题设出发,根据已知的定义(如自然数的定义)、公理(如皮亚诺公理)、定理(如自然数集是无限集定理),逐步推导出未知(即结论)的逻辑演译过程〗,所以要证明命题【\(\lim n\in\mathbb{N}\)\(\implies\lim n\notin\mathbb{N}\)】,我们们必须从〖\(\lim n\in\mathbb{N}\)〗这个\(\color{red}{题设}\)条件出发,根据皮亚诺公理(犹其是皮亚诺公理第二条),去逻辑演译出\(\lim n\notin\mathbb{N}\)这个结论。所以,正确地演译应是〖若\(\lim n\in\mathbb{N}\)\(\implies\lim n+1\in\mathbb{N}\)(理论根据是皮亚诺公理第二条:每一个确定的自然数a,都有一个确定的后继数a'(=a+1),a'(=a+1)也是自然数.〗于是问题就转化成如\(m+1\)是不是自然数的问题。如果\(m+1\)是自然数(即皮亚诺公理对\(\displaystyle\lim_{n \to \infty}n\)是否成立的问题)。
        现在我们证明命题:皮亚诺公理对\(\displaystyle\lim_{n \to \infty}n\)依然成立。
        证明:因为在现行数学理论中只有形如\(j\cdot\omega\)\((j\in\mathbb{N})\)这样的数没有直接前趋只有后继(即极限序数),而\(\displaystyle\lim_{n \to \infty}n\)不是\(\omega\)的直前,所以\(\displaystyle\lim_{n \to \infty}n+1\ne\omega\),又因\(\omega\)的后继是\(\omega+1\),所以\(\displaystyle\lim_{n \to \infty}n+1\in\mathbb{N}\).所以皮亚诺公理对自然数\(\displaystyle\lim_{n \to \infty}n\)成立.【证毕】。
        注意:我们在此\(\displaystyle\lim_{n \to \infty}n\in\mathbb{N}\)的基础上亦可证明\(\displaystyle\lim_{n \to \infty}2n\)、\(\displaystyle\lim_{n \to \infty}2^n\)、\(\displaystyle\lim_{n \to \infty}10^n\)、……是自然数!证明的合理性请参见康托尔《超穷数理论基础》P75页第7—8行.
Elim,由问题的一般(项)通过极限的手段探测无穷,这是数学上常规有效方法,这种方法应用于一切步及极限动算的始终。所以你反对目测,其实质就是反对现行数学行之有效地论证方法。也因为elim反对目测,所以elim才有\(\displaystyle\lim_{n \to \infty}n=Sup\mathbb{N}\)、\(\displaystyle\lim_{n \to \infty}n=Max\mathbb{N}\)、……这样一些荒谬结论。
        elim纯粹数学是通过严谨的证明获得的,而不是靠耍流氓、耍无赖得到的。郑告民科领袖elim数学切忌撒谎,因为数学中没有戈陪尔效应,谎言千遍,仍是谎言!至此谁嗜吃屎,谁的【白痴真身被验明,孬贼船漏不打一处来】你固然不想承认,然网络诸友想必还是心中有数的!
回复 支持 反对

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

Archiver|手机版|小黑屋|数学中国 ( 京ICP备05040119号 )

GMT+8, 2025-11-4 04:06 , Processed in 0.093555 second(s), 15 queries .

Powered by Discuz! X3.4

Copyright © 2001-2020, Tencent Cloud.

快速回复 返回顶部 返回列表