|
本帖最后由 Ysu2008 于 2025-5-23 10:30 编辑
【解】
(0) 以 B 为坐标原点,BC为 X 轴建立平面直角坐标系,则有
\(\cos\angle ABC=\frac{4^2+5^2-6^2}{2\times4\times5}=\frac{1}{8}\)
\(\sin\angle ABC=\sin\left( \arccos\left( \frac{1}{8}\right)\right)=\frac{3\sqrt{7}}{8}\)
A 点坐标为 \(\left( \frac{5}{8}\ {,}\ \frac{15\sqrt{7}}{8}\right)\) , C点坐标为 \(\left( 4\ {,}\ 0\right)\)
直线AC方程为 \(y=-\frac{5\sqrt{7}}{9}x+\frac{20\sqrt{7}}{9}\)
(1) 设向量 \(\overrightarrow{BE}=a\) , 向量 \(\overrightarrow{BD}=b\left( \cos\angle ABC+i\sin\angle ABC\right)=b\left( \frac{1}{8}+i\frac{3\sqrt{7}}{8}\right)\)
(2) \(\overrightarrow{DE}=\overrightarrow{BE}-\overrightarrow{BD}=a-b\left( \frac{1}{8}+i\frac{3\sqrt{7}}{8}\right)=a-\frac{b}{8}-i\frac{3\sqrt{7}b}{8}\)
(3) 将\(\overrightarrow{DE}\)逆时针旋转\(60^{\circ}\)得到\(\overrightarrow{DF}=\overrightarrow{DE}\times\left( \cos\frac{\pi}{3}+i\sin\frac{\pi}{3}\right)=\frac{a}{2}-\frac{b}{16}+\frac{3\sqrt{21}}{16}b+\left( \frac{\sqrt{3}}{2}a-\frac{3\sqrt{7}}{16}b-\frac{\sqrt{3}}{16}b\right)i\)
(4) \(\overrightarrow{BF}=\overrightarrow{BD}+\overrightarrow{DF}=\frac{a}{2}+\frac{b}{16}+\frac{3\sqrt{21}}{16}b+\left( \frac{\sqrt{3}}{2}a+\frac{3\sqrt{7}}{16}b-\frac{\sqrt{3}}{16}b\right)i\)
(5) \(\overrightarrow{BF}\) 的实部与虚部必然满足直线AC方程,从而得到 \(a{,}b\)关系式
\(\frac{\sqrt{3}}{2}a+\frac{3\sqrt{7}}{16}b-\frac{\sqrt{3}}{16}b=-\frac{5\sqrt{7}}{9}\left( \frac{a}{2}+\frac{b}{16}+\frac{3\sqrt{21}}{16}b\right)+\frac{20\sqrt{7}}{9}\)
\(\Rightarrow b=-\frac{9\left( \frac{\sqrt{3}}{2}+\frac{5\sqrt{7}}{18}\right)a}{2\left( 3\sqrt{3}+\sqrt{7}\right)}+\frac{10\sqrt{7}}{3\sqrt{3}+\sqrt{7}}\)
(6) 正三角形边长即 \(\left| \overrightarrow{DE}\right|=\sqrt{\left( a-\frac{b}{8}\right)^2+\left( \frac{3\sqrt{7}}{8}b\right)^2}\)
(7) 将 \(b\) 代入(6)式消去 \(b\),被开方式是关于\(a\)的开口向上的抛物线(如下图),当 \(a=\frac{5}{301}\left( 33\sqrt{21}-49\right)=1.6980896666701...\)时,被开方式取得最小值 \(\frac{225}{344}\left( 77-15\sqrt{21}\right)\),所以正三角形边长最小值为 \(\sqrt{\frac{225}{344}\left( 77-15\sqrt{21}\right)}=\frac{15}{172}\sqrt{86\left( 77-15\sqrt{21}\right)}=2.32454486012981263...\)
|
本帖子中包含更多资源
您需要 登录 才可以下载或查看,没有帐号?注册
x
|