数学中国

 找回密码
 注册
搜索
热搜: 活动 交友 discuz
查看: 606|回复: 8

孬种搅局01\(\Huge\textbf{定理}:\,\underset{n\to\infty}{\lim}n\not\in\mathbb{N}\)

[复制链接]
发表于 2025-5-20 07:01 | 显示全部楼层 |阅读模式
本帖最后由 elim 于 2025-10-30 12:26 编辑

从分析的观点看这个定理是显然的:因为\(\{n\}\)
非柯西序列, \(\displaystyle\lim_{n\to\infty}n\)不存在, 当然就不是自然数.
这个定理是要指出,在更底层的集论意义下
\(\displaystyle\lim_{n\to\infty}n\) 仍然不是自然数. 在集论中自然数由递
归式给出 \(\small 0=\phi, n+1=n\cup\{n\}=\{0,\ldots,n\}\)
自然数间的大小关系等价于真扩集/子集关系.
由此即知自然数序列作为严格增序列的极限是
\(\displaystyle\lim_{n\to\infty}n=\bigcup_{n=1}^\infty\{0,\ldots,n\}=\mathbb{N}=\sup\mathbb{N}\).
这里第一个等号从集合升列的极限的集论公式
得到,最后一个等号自然数的集论序关系约定
及上确界定义给出. 由自然数的集论构造, 自然
数皆\(\mathbb{N}\)的真子集,故
\(\color{red}{\mathbb{N}\not\in\mathbb{N}}\).
【定理】\(\displaystyle\lim_{n\to\infty}n=\mathbb{N}=\sup\mathbb{N}\not\in\mathbb{N}\) 的以上论
\(\quad\)证以皮亚诺公理为据. 自然数的集论表达式,
\(\quad \mathbb{N}\)无最大元论断需要全部皮亚诺公理支撑.

【注记】康托的基数理论及序数理论是对皮亚
\(\quad\)诺的自然数理论从有穷基数全体向一般基数,
\(\quad\)从有限序数全体向一般序数的扩展. 皮亚诺
\(\quad\)意义下的自然数全体是\(\mathbb{N}\). 一切不在\(\mathbb{N}\)中的元
\(\quad\)素必有不合皮亚诺公理之处. 康托从来没有称
\(\quad\)他的超穷数为自然数. 也没有任何书著称\(\mathbb{N}\)含
\(\quad\)非有穷元素.


发表于 2025-5-20 07:10 | 显示全部楼层
由皮亚诺公理得自然数的递归集(\(\dagger\))\(0=\phi\),\(n+1=n\cup\{n\}=\{0,…,n\}\)得\(\displaystyle\lim_{n \to \infty}n\in\)\(\{0,1,2,…,\displaystyle\lim_{n \to \infty}n\}=\)\(\mathbb{N}=\)\(\displaystyle\lim_{n \to \infty} (n+1)\),【自然数皆为\(\mathbb{N}\)的真子集】尚等证明,不能作为论据!你说了半天,并没有说清楚什么是自然数?为什么\(\displaystyle\lim_{n \to \infty}n\)不是自然数?难道这就是你的底层逻辑?是的,\(\mathbb{N}\)无最大元,试问elim在你的数学认知中有最大无穷大,较大无穷大,最小无穷大吗?谁是白痴岂不显见?
回复 支持 反对

使用道具 举报

发表于 2025-10-31 07:13 | 显示全部楼层

        elim于2025-10-30 13:38发表新主题《\(\lim n\in\mathbb{N}\)\(\implies\lim n\notin\mathbb{N}\)》该主题的主帖认为【\(\displaystyle\lim_{n \to \infty}n=m\)\(\in\mathbb{N}\),则对n>M=m+1令\(n\to\infty\)得\(\displaystyle\lim_{n \to \infty}n<\)\(m+1=M\le\displaystyle\lim_{n \to \infty}n=m\),\(m+1\le m\)\(\implies m\notin\mathbb{N}\)\(\implies\displaystyle\lim_{n \to \infty}n\)\(\notin\mathbb{N}\)】elim论述之余,一如既往地对春风晚霞发动攻击,【顽瞎目测蕴含顽瞎目测的否定,此乃嗜屎报应.】【滚驴白痴真身被验明,孬贼船漏不打一处来.】
        elim的这个主题及主贴既向我们充分地展示了elim反数学的丑恶嘴脸,也充分暴露了elim嗜屎如命,滚驴白痴的肮脏心理。同时更进一步展示了elim不懂数学论证、不懂自然数、不懂无穷数学白痴的事实。现在我们结合《\(\lim n\in\mathbb{N}\)\(\implies\lim n\notin\mathbb{N}\)》这个主题重点讲讲什么是论证。
所谓证明是指〖从命题的题设出发,根据已知的定义(如自然数的定义)、公理(如皮亚诺公理)、定理(如自然数集是无限集定理),逐步推导出未知(即结论)的逻辑演译过程〗,所以要证明命题【\(\lim n\in\mathbb{N}\)\(\implies\lim n\notin\mathbb{N}\)】,我们们必须从〖\(\lim n\in\mathbb{N}\)〗这个\(\color{red}{题设}\)条件出发,根据皮亚诺公理(犹其是皮亚诺公理第二条),去逻辑演译出\(\lim n\notin\mathbb{N}\)这个结论。所以,正确地演译应是〖若\(\lim n\in\mathbb{N}\)\(\implies\lim n+1\in\mathbb{N}\)(理论根据是皮亚诺公理第二条:每一个确定的自然数a,都有一个确定的后继数a'(=a+1),a'(=a+1)也是自然数.〗于是问题就转化成如\(m+1\)是不是自然数的问题。如果\(m+1\)是自然数(即皮亚诺公理对\(\displaystyle\lim_{n \to \infty}n\)是否成立的问题),
        现在我们证明命题:皮亚诺公理对\(\displaystyle\lim_{n \to \infty}n\)依然成立。
        证明:因为在现行数学理论中只有形如\(j\cdot\omega\)\((j\in\mathbb{N})\)这样的数没有直接前趋只有后继(即极限序数),而\(\displaystyle\lim_{n \to \infty}n\)不是\(\omega\)的直前,所以\(\displaystyle\lim_{n \to \infty}n+1\ne\omega\),又因\(\omega\)的后继是\(\omega+1\),所以\(\displaystyle\lim_{n \to \infty}n+1\in\mathbb{N}\).所以皮亚诺公理对自然数\(\displaystyle\lim_{n \to \infty}n\)成立.【证毕】。
        注意:我们在此\(\displaystyle\lim_{n \to \infty}n\in\mathbb{N}\)的基础上亦可证明\(\displaystyle\lim_{n \to \infty}2n\)、\(\displaystyle\lim_{n \to \infty}2^n\)、\(\displaystyle\lim_{n \to \infty}10^n\)、……是自然数!证明的合理性请参见康托尔《超穷数理论基础》P75页第7—8行.
Elim,由问题的一般(项)通过极限的手段探测无穷,这是数学上常规有效方法,这种方法应用于一切步及极限动算的始终。所以你反对目测,其实质就是反对现行数学行之有效地论证方法。也因为elim反对目测,所以elim才有\(\displaystyle\lim_{n \to \infty}n=Sup\mathbb{N}\)、\(\displaystyle\lim_{n \to \infty}n=Max\mathbb{N}\)、……这样一些荒谬结论。
        elim纯粹数学是通过严谨的证明获得的,而不是靠耍流氓、耍无赖得到的。郑告民科领袖elim数学切忌撒谎,因为数学中没有戈陪尔效应,谎言千遍,仍是谎言!至此谁嗜吃屎,谁的【白痴真身被验明,孬贼船漏不打一处来】你固然不想承认,然网络诸友想必还是心中有数的!

回复 支持 反对

使用道具 举报

发表于 2025-10-31 08:30 | 显示全部楼层

        elim于2025-10-30 13:38发表新主题《\(\lim n\in\mathbb{N}\)\(\implies\lim n\notin\mathbb{N}\)》该主题的主帖认为【\(\displaystyle\lim_{n \to \infty}n=m\)\(\in\mathbb{N}\),则对n>M=m+1令\(n\to\infty\)得\(\displaystyle\lim_{n \to \infty}n<\)\(m+1=M\le\displaystyle\lim_{n \to \infty}n=m\),\(m+1\le m\)\(\implies m\notin\mathbb{N}\)\(\implies\displaystyle\lim_{n \to \infty}n\)\(\notin\mathbb{N}\)】elim论述之余,一如既往地对春风晚霞发动攻击,【顽瞎目测蕴含顽瞎目测的否定,此乃嗜屎报应.】【滚驴白痴真身被验明,孬贼船漏不打一处来.】
        elim的这个主题及主贴既向我们充分地展示了elim反数学的丑恶嘴脸,也充分暴露了elim嗜屎如命,滚驴白痴的肮脏心理。同时更进一步展示了elim不懂数学论证、不懂自然数、不懂无穷数学白痴的事实。现在我们结合《\(\lim n\in\mathbb{N}\)\(\implies\lim n\notin\mathbb{N}\)》这个主题重点讲讲什么是论证。
        所谓证明是指〖从命题的题设出发,根据已知的定义(如自然数的定义)、公理(如皮亚诺公理)、定理(如自然数集是无限集定理),逐步推导出未知(即结论)的逻辑演译过程〗,所以要证明命题【\(\lim n\in\mathbb{N}\)\(\implies\lim n\notin\mathbb{N}\)】,我们们必须从〖\(\lim n\in\mathbb{N}\)〗这个\(\color{red}{题设}\)条件出发,根据皮亚诺公理(犹其是皮亚诺公理第二条),去逻辑演译出\(\lim n\notin\mathbb{N}\)这个结论。所以,正确地演译应是〖若\(\lim n\in\mathbb{N}\)\(\implies\lim n+1\in\mathbb{N}\)(理论根据是皮亚诺公理第二条:每一个确定的自然数a,都有一个确定的后继数a'(=a+1),a'(=a+1)也是自然数.〗于是问题就转化成如\(m+1\)是不是自然数的问题。如果\(m+1\)是自然数(即皮亚诺公理对\(\displaystyle\lim_{n \to \infty}n\)是否成立的问题)。
        现在我们证明命题:皮亚诺公理对\(\displaystyle\lim_{n \to \infty}n\)依然成立。
        证明:因为在现行数学理论中只有形如\(j\cdot\omega\)\((j\in\mathbb{N})\)这样的数没有直接前趋只有后继(即极限序数),而\(\displaystyle\lim_{n \to \infty}n\)不是\(\omega\)的直前,所以\(\displaystyle\lim_{n \to \infty}n+1\ne\omega\),又因\(\omega\)的后继是\(\omega+1\),所以\(\displaystyle\lim_{n \to \infty}n+1\in\mathbb{N}\).所以皮亚诺公理对自然数\(\displaystyle\lim_{n \to \infty}n\)成立.【证毕】。
        注意:我们在此\(\displaystyle\lim_{n \to \infty}n\in\mathbb{N}\)的基础上亦可证明\(\displaystyle\lim_{n \to \infty}2n\)、\(\displaystyle\lim_{n \to \infty}2^n\)、\(\displaystyle\lim_{n \to \infty}10^n\)、……是自然数!证明的合理性请参见康托尔《超穷数理论基础》P75页第7—8行.
Elim,由问题的一般(项)通过极限的手段探测无穷,这是数学上常规有效方法,这种方法应用于一切步及极限动算的始终。所以你反对目测,其实质就是反对现行数学行之有效地论证方法。也因为elim反对目测,所以elim才有\(\displaystyle\lim_{n \to \infty}n=Sup\mathbb{N}\)、\(\displaystyle\lim_{n \to \infty}n=Max\mathbb{N}\)、……这样一些荒谬结论。
        elim纯粹数学是通过严谨的证明获得的,而不是靠耍流氓、耍无赖得到的。郑告民科领袖elim数学切忌撒谎,因为数学中没有戈陪尔效应,谎言千遍,仍是谎言!至此谁嗜吃屎,谁的【白痴真身被验明,孬贼船漏不打一处来】你固然不想承认,然网络诸友想必还是心中有数的!
回复 支持 反对

使用道具 举报

 楼主| 发表于 2025-10-31 13:30 | 显示全部楼层
楼上定理的约简版
【定理】\(v=\displaystyle\lim_{n\to\infty}n =\sup\mathbb{N}\not\in\mathbb{N}.\)\(\\\)
【证明】据皮亚诺公理, 若\(v\in\mathbb{N}\), 则其后继\(m\)亦然.
\(\qquad\quad\)得矛盾 \(v=\sup\mathbb{N}\ge m=v+1>v.\quad\square\)
【注记】自然数集的上确界不小于任何自然数.
回复 支持 反对

使用道具 举报

发表于 2025-11-1 11:10 | 显示全部楼层
本帖最后由 春风晚霞 于 2025-11-2 08:46 编辑

elim,根据威尔斯特拉数列极限的\(\varepsilon—N\)定义,\(\infty=\{n|n>N_{\varepsilon}\)\((=\)\([\tfrac{1}{\varepsilon}]+1\}\)\(( N_{\varepsilon}\in\mathbb{N})\),所以\(\displaystyle\lim_{n \to \infty}n\to\infty \)即指\(\displaystyle\lim_{n \to \infty}n\in\)\(\{n|n>N_{\varepsilon}\)\((=\)\([\tfrac{1}{\varepsilon}]+1\}\)之意.由于\(\{n|n>N_{\varepsilon}(=[\tfrac{1}{\varepsilon}]+1\}\subset\)\(\mathbb{N}\),所以\(\displaystyle\lim_{n \to \infty}n\in\mathbb{N}\);还有春氏可达的数学表达式是:\(\displaystyle\lim_{\color{red}{n→∞}}\color{Magenta}{a_n=a}\Longleftrightarrow\color{Magenta}{a_n=a}(\color{red}{n→∞})\)与你的\(\displaystyle\lim_{n \to \infty}n\notin\)\(\mathbb{N}\)有什么关系?若\(\displaystyle\lim_{n \to \infty}n\notin\)\(\mathbb{N}\),数学中(当然也包括理论力学、分析化学……)中的\(\displaystyle\lim_{n \to \infty}\)还有数学意义吗?还具可操作性吗?再者春氏可达的先决条件(即已知条件)是“极限存在”,你的\(\displaystyle\lim_{n \to \infty}a_n\ne a\)又是什么东西?通俗地说,人家的命题是:人都不吃自己拉的屎。你偏要定义:elim要吃拉的屎。在这样的定义下,你最多只能证明elim要吃自己拉的屎。除此之外,你还能证明什么呢?
回复 支持 反对

使用道具 举报

发表于 2025-11-3 07:23 | 显示全部楼层

        elim于2025-10-30 13:38发表新主题《\(\lim n\in\mathbb{N}\)\(\implies\lim n\notin\mathbb{N}\)》该主题的主帖认为【\(\displaystyle\lim_{n \to \infty}n=m\)\(\in\mathbb{N}\),则对n>M=m+1令\(n\to\infty\)得\(\displaystyle\lim_{n \to \infty}n<\)\(m+1=M\le\displaystyle\lim_{n \to \infty}n=m\),\(m+1\le m\)\(\implies m\notin\mathbb{N}\)\(\implies\displaystyle\lim_{n \to \infty}n\)\(\notin\mathbb{N}\)】elim论述之余,一如既往地对春风晚霞发动攻击,【顽瞎目测蕴含顽瞎目测的否定,此乃嗜屎报应.】【滚驴白痴真身被验明,孬贼船漏不打一处来.】
        elim的这个主题及主贴既向我们充分地展示了elim反数学的丑恶嘴脸,也充分暴露了elim嗜屎如命,滚驴白痴的肮脏心理。同时更进一步展示了elim不懂数学论证、不懂自然数、不懂无穷数学白痴的事实。现在我们结合《\(\lim n\in\mathbb{N}\)\(\implies\lim n\notin\mathbb{N}\)》这个主题重点讲讲什么是论证。
        所谓证明是指〖从命题的题设出发,根据已知的定义(如自然数的定义)、公理(如皮亚诺公理)、定理(如自然数集是无限集定理),逐步推导出未知(即结论)的逻辑演译过程〗,所以要证明命题【\(\lim n\in\mathbb{N}\)\(\implies\lim n\notin\mathbb{N}\)】,我们们必须从〖\(\lim n\in\mathbb{N}\)〗这个\(\color{red}{题设}\)条件出发,根据皮亚诺公理(犹其是皮亚诺公理第二条),去逻辑演译出\(\lim n\notin\mathbb{N}\)这个结论。所以,正确地演译应是〖若\(\lim n\in\mathbb{N}\)\(\implies\lim n+1\in\mathbb{N}\)(理论根据是皮亚诺公理第二条:每一个确定的自然数a,都有一个确定的后继数a'(=a+1),a'(=a+1)也是自然数.〗于是问题就转化成如\(m+1\)是不是自然数的问题。如果\(m+1\)是自然数(即皮亚诺公理对\(\displaystyle\lim_{n \to \infty}n\)是否成立的问题)。
        现在我们证明命题:皮亚诺公理对\(\displaystyle\lim_{n \to \infty}n\)依然成立。
        证明:因为在现行数学理论中只有形如\(j\cdot\omega\)\((j\in\mathbb{N})\)这样的数没有直接前趋只有后继(即极限序数),而\(\displaystyle\lim_{n \to \infty}n\)不是\(\omega\)的直前,所以\(\displaystyle\lim_{n \to \infty}n+1\ne\omega\),又因\(\omega\)的后继是\(\omega+1\),所以\(\displaystyle\lim_{n \to \infty}n+1\in\mathbb{N}\).所以皮亚诺公理对自然数\(\displaystyle\lim_{n \to \infty}n\)成立.【证毕】。
        注意:我们在此\(\displaystyle\lim_{n \to \infty}n\in\mathbb{N}\)的基础上亦可证明\(\displaystyle\lim_{n \to \infty}2n\)、\(\displaystyle\lim_{n \to \infty}2^n\)、\(\displaystyle\lim_{n \to \infty}10^n\)、……是自然数!证明的合理性请参见康托尔《超穷数理论基础》P75页第7—8行.
        elim,由问题的一般(项)通过极限的手段探测无穷,这是数学上常规有效方法,这种方法应用于一切步及极限动算的始终。所以你反对目测,其实质就是反对现行数学行之有效地论证方法。也因为elim反对目测,所以elim才有\(\displaystyle\lim_{n \to \infty}n=Sup\mathbb{N}\)、\(\displaystyle\lim_{n \to \infty}n=Max\mathbb{N}\)、……这样一些荒谬结论。
        elim纯粹数学是通过严谨的证明获得的,而不是靠耍流氓、耍无赖得到的。郑告民科领袖elim数学切忌撒谎,因为数学中没有戈陪尔效应,谎言千遍,仍是谎言!至此谁嗜吃屎,谁的【白痴真身被验明,孬贼船漏不打一处来】你固然不想承认,然网络诸友想必还是心中有数的!
回复 支持 反对

使用道具 举报

发表于 2025-11-3 15:56 | 显示全部楼层
elim,根据威尔斯特拉数列极限的\(\varepsilon—N\)定义,\(\infty=\{n|n>N_{\varepsilon}\)\((=\)\([\tfrac{1}{\varepsilon}]+1\}\)\(( N_{\varepsilon}\in\mathbb{N})\),所以\(\displaystyle\lim_{n \to \infty}n\to\infty \)即指\(\displaystyle\lim_{n \to \infty}n\in\)\(\{n|n>N_{\varepsilon}\)\((=\)\([\tfrac{1}{\varepsilon}]+1\}\)之意.由于\(\{n|n>N_{\varepsilon}(=[\tfrac{1}{\varepsilon}]+1\}\subset\)\(\mathbb{N}\),所以\(\displaystyle\lim_{n \to \infty}n\in\mathbb{N}\);还有春氏可达的数学表达式是:\(\displaystyle\lim_{\color{red}{n→∞}}\color{Magenta}{a_n=a}\Longleftrightarrow\color{Magenta}{a_n=a}(\color{red}{n→∞})\)与你的\(\displaystyle\lim_{n \to \infty}n\notin\)\(\mathbb{N}\)有什么关系?若\(\displaystyle\lim_{n \to \infty}n\notin\)\(\mathbb{N}\),数学中(当然也包括理论力学、分析化学……)中的\(\displaystyle\lim_{n \to \infty}\)还有数学意义吗?还具可操作性吗?再者春氏可达的先决条件(即已知条件)是“极限存在”,你的\(\displaystyle\lim_{n \to \infty}a_n\ne a\)又是什么东西?通俗地说,人家的命题是:人都不吃自己拉的屎。你偏要定义:elim要吃拉的屎。在这样的定义下,你最多只能证明elim要吃自己拉的屎。除此之外,你还能证明什么呢?
回复 支持 反对

使用道具 举报

 楼主| 发表于 2025-11-3 22:30 | 显示全部楼层
现行数学定理:\(\lim n\not\in\mathbb{N}\).
(反证法) 若 \(\lim n = m\in\mathbb{N}\), 取\(\varepsilon=1,\) 对任意
\({\scriptsize N}> m\), 当\(n\scriptsize >N\) 时 \(\small |n-m| > {\scriptsize N}-m\ge 1=\varepsilon.\)
故 \(\lim n\ne m.\quad\therefore\;\;\lim n\)不等于任何自然数.

用春霞自己的话, 瞎驴目测 \(\lim n\in\mathbb{N}\)大錯特错.

【注记】\(\lim a_n\ne a\) 的定义是
\(\quad\;\;\exists\varepsilon>0\,\forall N\in\mathbb{N}\,\exists n>N\,(|a_n-a|\ge\varepsilon)\)

回复 支持 反对

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

Archiver|手机版|小黑屋|数学中国 ( 京ICP备05040119号 )

GMT+8, 2025-11-4 04:06 , Processed in 0.078033 second(s), 15 queries .

Powered by Discuz! X3.4

Copyright © 2001-2020, Tencent Cloud.

快速回复 返回顶部 返回列表