|
本帖最后由 春风晚霞 于 2025-5-27 16:08 编辑
由冯\(\cdot\)诺依曼自然数定义(或自然数生成法则)得:\(0=\phi\),\(1=\{0\}\),\(2=\)\(\{0,\)\(1\}\),\(3=\{0,1,2\}\),…,\(k=\{0,1,2,…(k-1)\}\),… .
两端分别求并得:\(\displaystyle\bigcup_{k=0}^{\infty}k=\)\(\displaystyle\bigcup_{k=0}^{\infty}\{\phi,0,1,2,3,…,(k-1)\}\) .所以\(\displaystyle\lim_{n \to \infty}\{1,2,\)\(…,n\}=\)\(\displaystyle\bigcup_{n=0}^{\infty}\{\phi,0,\)\(1,2,3,…,\)\((n-1)\}=\)\(\{\phi,0,1,…(\displaystyle\lim_{n \to \infty}n-1)\}\).根据归纳集的定义有\(\{\phi,0,1,…(\displaystyle\lim_{n \to \infty}n-1)\}=\mathbb{N}\)(参见清华大学张峰 陶然著《集合论基础教程》P86页定义5.2.3). 所以\(\{0,\)\(1,2,…\displaystyle\lim_{n \to \infty}n\}=\mathbb{N}\)(相等关系的传递性).所以\(\displaystyle\lim_{n \to \infty}n=\infty\in\mathbb{N}\) . |
|