数学中国

 找回密码
 注册
搜索
热搜: 活动 交友 discuz
查看: 1923|回复: 166

\(\huge^*\;\color{red}{{\min}\{\textbf{无穷序数}\}}=1\textbf{st 极限序数}\)

[复制链接]
发表于 2025-5-30 11:31 | 显示全部楼层 |阅读模式
本帖最后由 elim 于 2025-8-16 21:12 编辑

【定理】最小无穷序数\(\small\,=\,\)第一个极限序数\(\,\omega\)
【证明】最小无穷序数\(\,\mu\,\)之前的序数皆有限
\(\qquad\)序数故其后继皆非无穷序数\(\mu\). 因此 \(\mu\)
\(\qquad\)是最小非后继序数, 即第一个极限序数.
发表于 2025-5-30 11:31 | 显示全部楼层
序数\(u\)的后继序数是\(u+1=u\cup\{u\}\)这也是冯\(\cdot\)诺依曼自然数构成法。后续序数【\(u+\omega=sup\mathscr{U}=\)\(\displaystyle\bigcup_{u\in\mathscr{U}}v=\)\(\displaystyle\bigcup\mathscr{U}\)】出自董延闿著【基础集合论】 第六章哪节哪页哪行。从你的一贯陈述看这个错误的表达式都是你的“底层逻辑”所为。应该与董延闿无关!
回复 支持 反对

使用道具 举报

发表于 2025-5-30 14:18 | 显示全部楼层
冯\(\cdot\)诺依曼自然数构成法\(u+1=u\cup\{u\}\)的“=”两边要么同时是数,要么同时是集合。决无一个“数”等于一个集合之理。并且“=”号数学含义是:”=“的左边是”=“右边的后继。而等式\(\displaystyle\lim_{n \to \infty}n=\)\(\displaystyle\bigcup_{n\in\mathbb{N}}n\)是集合等式。而【对\(n\in\mathbb{N}\)显然亦有\(n=\{0,1,2,…\}\)】的“=”则表示n是集合\(\{0,1,2,…(n-1)\}\)后继,即集合\(\{0,1,2.…,n\}\)是集合\(\{0,1,2,…(n-1)\}\)的后继。虽然集合\(\{0,1,2,…\)\((n-1)\}\)\(\subsetneq\mathbb{N}\),但集合\(sup\mathbb{N}=\)\(\displaystyle\lim_{n \to \infty}n=\)\(\displaystyle\bigcup_{n\in\mathbb{N}}=\)\(\mathbb{N}=\mathbb{N}\) .所以没有\(n<\mathbb{N}\)之说。当然也就没有\(\mathbb{N}\)\(\subsetneq\)\(\mathbb{N}\)之理!由于单增集列\(A_k=\{0,1,2,…k\}\)的极限集存在,并且\(\displaystyle\lim_{n \to \infty}A_n=\)\(\displaystyle\lim_{n \to \infty}n\),所以\(\displaystyle\lim_{n \to \infty}n\)\(\subseteq\mathbb{N}\)\(\land\mathbb{N}\subseteq\displaystyle\lim_{n \to \infty}n\) .所以\(\displaystyle\lim_{n \to \infty}n\in\mathbb{N}\) .
回复 支持 反对

使用道具 举报

发表于 2025-5-31 03:23 | 显示全部楼层

       冯\(\cdot\)诺依曼自然数构成法\(u+1=u\cup\{u\}\)的“=”两边要么同时是数,要么同时是集合。决无一个“数”等于一个集合之理。并且“=”号数学含义是:“=”的左边是“=”右边的后继。等式\(\displaystyle\lim_{n \to \infty}n=\)\(\displaystyle\bigcup_{n\in\mathbb{N}}n\)是集合等式。而对\(n\in\mathbb{N}\)显然亦有\(n=\{0,1,2,…\}\)的“=”则表示集合n是集合\(\{0,1,2,…(n-1)\}\)后继,即集合\(\{0,1,2.…,n\}\)是集合\(\{0,1,2,\)\(…(n-1)\}\)的后继。虽然集合\(\{0,1,2,\)\(…(n-1)\}\)\(\subsetneq\mathbb{N}\),但集合\(sup\mathbb{N}=\)\(\displaystyle\lim_{n \to \infty}n=\)\(\displaystyle\bigcup_{n\in\mathbb{N}}=\)\(\mathbb{N}\) .所以没有\(n<\mathbb{N}\)之说(数与集合的关系只有\(\in\)或\(\notin\)两种情形,而无“<”、“>”关系)。当然也就更没有\(\mathbb{N}\)\(\subsetneq\)\(\mathbb{N}\)之理!因为集合\(\displaystyle\lim_{n \to \infty}n=\)\(\mathbb{N}\) ,所以\((\displaystyle\lim_{n \to \infty}n\)\(\subseteq\mathbb{N})\)\(\land(\mathbb{N}\subseteq\displaystyle\lim_{n \to \infty}n)\)(两集合相等的充分必要条件). 所以\(\displaystyle\lim_{n \to \infty}n\in\mathbb{N}\) .
回复 支持 反对

使用道具 举报

发表于 2025-7-8 05:32 | 显示全部楼层

       elim孬种,除你以外谁也不会妄图推翻\(\forall n\in\mathbb{N}\)\((n<n+1)\)!你的命题正好说明超穷自然数存在的合理性。因为由皮亚诺公理第二条,\(\displaystyle\lim_{n \to \infty}n\in\mathbb{N}\)(否则\(\mathbb{N}=\phi\))的后继\(\displaystyle\lim_{n \to \infty}n\)+1也是自然数!故此超穷自然数存在的合理性得证!
回复 支持 反对

使用道具 举报

发表于 2025-7-8 13:20 | 显示全部楼层

命题:若\(\displaystyle\lim_{n \to \infty}n\notin\mathbb{N}\),则\(\mathbb{N}=\phi\)
【证明:】
\begin{split}
&\because\quad v=\displaystyle\lim_{n \to \infty}n\notin\mathbb{N}\quad(已知) \\
&\therefore\quad (v-1)\notin\mathbb{N}\quad(否则v\in\mathbb{N},Peano axiom第二条)\\
&\therefore\quad (v-2)\notin\mathbb{N}\quad(否则(v-1)\in\mathbb{N},Peano axioms第二条)\\
&\therefore\quad (v-3)\notin\mathbb{N}\quad(否则(v-2)\in\mathbb{N},Peano axioms第二条)\\
&\quad\quad\vdots\quad\quad\quad\quad\vdots \\
&\therefore\quad (k+1)\notin\mathbb{N}\quad(否则(k+2)\in\mathbb{N},Peano axioms第二条)\\
&\therefore\quad k\notin\mathbb{N}\quad(否则(k+1)\in\mathbb{N},Peano axioms第二条)\\
&\quad\quad\vdots\quad\quad\quad \quad\vdots \\
&\therefore\quad 2\notin\mathbb{N}\quad(否则3\in\mathbb{N},Peano axioms第二条)\\
&\therefore\quad 1\notin\mathbb{N}\quad(否则2\in\mathbb{N},Peano axioms第二条)\\
&\therefore\quad 0\notin\mathbb{N}\quad(否则1\in\mathbb{N,}Peano axioms第二条)\\
&\therefore\quad \mathbb{N}=\phi\quad(因任意自然数都不属于\mathbb{N})
\end{split}【证毕】
回复 支持 反对

使用道具 举报

发表于 2025-7-9 05:17 | 显示全部楼层

命题:若\(\displaystyle\lim_{n \to \infty}n\notin\mathbb{N}\),则\(\mathbb{N}=\phi\)
【证明:】
\begin{split}
&\because\quad v=\displaystyle\lim_{n \to \infty}n\notin\mathbb{N}\quad(已知) \\
&\therefore\quad (v-1)\notin\mathbb{N}\quad(否则v\in\mathbb{N},Peano axiom第二条)\\
&\therefore\quad (v-2)\notin\mathbb{N}\quad(否则(v-1)\in\mathbb{N},Peano axioms第二条)\\
&\therefore\quad (v-3)\notin\mathbb{N}\quad(否则(v-2)\in\mathbb{N},Peano axioms第二条)\\
&\quad\quad\vdots\quad\quad\quad\quad\vdots \\
&\therefore\quad (k+1)\notin\mathbb{N}\quad(否则(k+2)\in\mathbb{N},Peano axioms第二条)\\
&\therefore\quad k\notin\mathbb{N}\quad(否则(k+1)\in\mathbb{N},Peano axioms第二条)\\
&\quad\quad\vdots\quad\quad\quad \quad\vdots \\
&\therefore\quad 2\notin\mathbb{N}\quad(否则3\in\mathbb{N},Peano axioms第二条)\\
&\therefore\quad 1\notin\mathbb{N}\quad(否则2\in\mathbb{N},Peano axioms第二条)\\
&\therefore\quad 0\notin\mathbb{N}\quad(否则1\in\mathbb{N,}Peano axioms第二条)\\
&\therefore\quad \mathbb{N}=\phi\quad(因任意自然数都不属于\mathbb{N})
\end{split}【证毕】
回复 支持 反对

使用道具 举报

发表于 2025-7-9 14:06 | 显示全部楼层

命题:若\(\displaystyle\lim_{n \to \infty}n\notin\mathbb{N}\),则\(\mathbb{N}=\phi\)
【证明:】
\begin{split}
&\because\quad v=\displaystyle\lim_{n \to \infty}n\notin\mathbb{N}\quad(已知) \\
&\therefore\quad (v-1)\notin\mathbb{N}\quad(否则v\in\mathbb{N},Peano axiom第二条)\\
&\therefore\quad (v-2)\notin\mathbb{N}\quad(否则(v-1)\in\mathbb{N},Peano axioms第二条)\\
&\therefore\quad (v-3)\notin\mathbb{N}\quad(否则(v-2)\in\mathbb{N},Peano axioms第二条)\\
&\quad\quad\vdots\quad\quad\quad\quad\vdots \\
&\therefore\quad (k+1)\notin\mathbb{N}\quad(否则(k+2)\in\mathbb{N},Peano axioms第二条)\\
&\therefore\quad k\notin\mathbb{N}\quad(否则(k+1)\in\mathbb{N},Peano axioms第二条)\\
&\quad\quad\vdots\quad\quad\quad \quad\vdots \\
&\therefore\quad 2\notin\mathbb{N}\quad(否则3\in\mathbb{N},Peano axioms第二条)\\
&\therefore\quad 1\notin\mathbb{N}\quad(否则2\in\mathbb{N},Peano axioms第二条)\\
&\therefore\quad 0\notin\mathbb{N}\quad(否则1\in\mathbb{N,}Peano axioms第二条)\\
&\therefore\quad \mathbb{N}=\phi\quad(因任意自然数都不属于\mathbb{N})
\end{split}【证毕】
       elim天生脑残!\(v=v-1\)这只是表示正整数\(v\)与正整数\(v-1\)的值都等于\(\infty\),但自丝数是基数和序数的统一。所以\(v\)和\(v-1\)又是两个不同的自然,且\(v>v-1\)。\(v-1\)不是\(v\)的前趋与\(v\)不是\(v-1\)的后继符价。只可惜elim永远说不岀从哪个有限数起,自然数不再存在后继。其实elim根本就没弄懂这个证明,你所放之臭屁纯属强词夺理。所以elim天生脑残,其歪理解自然不值一驳。
回复 支持 反对

使用道具 举报

发表于 2025-7-10 07:14 | 显示全部楼层

命题:若\(\displaystyle\lim_{n \to \infty}n\notin\mathbb{N}\),则\(\mathbb{N}=\phi\)
【证明:】
\begin{split}
&\because\quad v=\displaystyle\lim_{n \to \infty}n\notin\mathbb{N}\quad(已知) \\
&\therefore\quad (v-1)\notin\mathbb{N}\quad(否则v\in\mathbb{N},Peano axiom第二条)\\
&\therefore\quad (v-2)\notin\mathbb{N}\quad(否则(v-1)\in\mathbb{N},Peano axioms第二条)\\
&\therefore\quad (v-3)\notin\mathbb{N}\quad(否则(v-2)\in\mathbb{N},Peano axioms第二条)\\
&\quad\quad\vdots\quad\quad\quad\quad\vdots \\
&\therefore\quad (k+1)\notin\mathbb{N}\quad(否则(k+2)\in\mathbb{N},Peano axioms第二条)\\
&\therefore\quad k\notin\mathbb{N}\quad(否则(k+1)\in\mathbb{N},Peano axioms第二条)\\
&\quad\quad\vdots\quad\quad\quad \quad\vdots \\
&\therefore\quad 2\notin\mathbb{N}\quad(否则3\in\mathbb{N},Peano axioms第二条)\\
&\therefore\quad 1\notin\mathbb{N}\quad(否则2\in\mathbb{N},Peano axioms第二条)\\
&\therefore\quad 0\notin\mathbb{N}\quad(否则1\in\mathbb{N,}Peano axioms第二条)\\
&\therefore\quad \mathbb{N}=\phi\quad(因任意自然数都不属于\mathbb{N})
\end{split}【证毕】
       elim天生脑残!\(v=v-1\)这只是表示正整数\(v\)与正整数\(v-1\)的值都等于\(\infty\),但自然数是基数和序数的统一。所以\(v\)和\(v-1\)又是两个不同的自然数,且\(v>v-1\)。\(v-1\)不是\(v\)的前趋与\(v\)不是\(v-1\)的后继等价。只可惜elim永远说不岀从哪个有限数起,自然数不再存在后继。其实elim根本就没弄懂这个证明,你所放之臭屁纯属强词夺理。elim天生脑残,其歪理自然不值一驳。
回复 支持 反对

使用道具 举报

发表于 2025-7-10 20:27 | 显示全部楼层
elim 发表于 2025-7-10 20:23
对 \(v=\lim n\), \(v-1\)不是皮亚诺意义下\(v\)的前
驱, 事实上对无穷数或无穷基数皆有\(v-1=v\) ,
根 ...


命题:若\(\displaystyle\lim_{n \to \infty}n\notin\mathbb{N}\),则\(\mathbb{N}=\phi\)
【证明:】
\begin{split}
&\because\quad v=\displaystyle\lim_{n \to \infty}n\notin\mathbb{N}\quad(已知) \\
&\therefore\quad (v-1)\notin\mathbb{N}\quad(否则v\in\mathbb{N},Peano axiom第二条)\\
&\therefore\quad (v-2)\notin\mathbb{N}\quad(否则(v-1)\in\mathbb{N},Peano axioms第二条)\\
&\therefore\quad (v-3)\notin\mathbb{N}\quad(否则(v-2)\in\mathbb{N},Peano axioms第二条)\\
&\quad\quad\vdots\quad\quad\quad\quad\vdots \\
&\therefore\quad (k+1)\notin\mathbb{N}\quad(否则(k+2)\in\mathbb{N},Peano axioms第二条)\\
&\therefore\quad k\notin\mathbb{N}\quad(否则(k+1)\in\mathbb{N},Peano axioms第二条)\\
&\quad\quad\vdots\quad\quad\quad \quad\vdots \\
&\therefore\quad 2\notin\mathbb{N}\quad(否则3\in\mathbb{N},Peano axioms第二条)\\
&\therefore\quad 1\notin\mathbb{N}\quad(否则2\in\mathbb{N},Peano axioms第二条)\\
&\therefore\quad 0\notin\mathbb{N}\quad(否则1\in\mathbb{N,}Peano axioms第二条)\\
&\therefore\quad \mathbb{N}=\phi\quad(因任意自然数都不属于\mathbb{N})
\end{split}【证毕】
       elim天生脑残!\(v=v-1\)这只是表示正整数\(v\)与正整数\(v-1\)的值都等于\(\infty\)。因为自然数是基数和序数的统一,所以\(v\)和\(v-1\)是两个不同的自然数,且\(v>v-1\)。\(v-1\)不是\(v\)的前趋与\(v\)不是\(v-1\)的后继等价。elim应当指出从哪个有限数起,自然数不再存在后继。elim根本就没弄懂这个证明,你的胡说八道纯属强词夺理。elim天生脑残,其歪理根本不值一驳。
回复 支持 反对

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

Archiver|手机版|小黑屋|数学中国 ( 京ICP备05040119号 )

GMT+8, 2025-8-19 15:12 , Processed in 0.090578 second(s), 16 queries .

Powered by Discuz! X3.4

Copyright © 2001-2020, Tencent Cloud.

快速回复 返回顶部 返回列表