数学中国

 找回密码
 注册
搜索
热搜: 活动 交友 discuz
查看: 183|回复: 38

\(\huge^*\;\underset{n\to\infty}{\lim}(n+k)=\lim n\,(\forall k\in\mathbb{N})\)

[复制链接]
发表于 2025-8-4 22:13 | 显示全部楼层 |阅读模式
本帖最后由 elim 于 2025-8-18 08:31 编辑

【定理】\(\displaystyle\lim_{n\to\infty}(n+k)=\lim _{n\to\infty}n\,(\forall k\in\mathbb{N})\)
【证明】对\(n+k< \sup\mathbb{N}\,(n, k\in\mathbb{N})\) 关于\(n\)取极
\(\qquad\)限得 \(\displaystyle\lim_{n\to\infty}(n+k)\le\small\sup\mathbb{N}=\lim_{n\to\infty}n\,(\forall k\in\mathbb{N}).\)
\(\qquad\)本定理由此得证.\(\small\qquad\square\)
【推论】\(\lim n\not\in\mathbb{N}\).
【证明】对\(v=\lim n\)有\(v=v+1.\)但自然数恒小
\(\qquad\)于其后继,  故\(v\)不是自然数.\(\small\qquad\square\)
发表于 2025-8-5 03:18 | 显示全部楼层

        对定理\(\displaystyle\lim_{n \to \infty}n\notin\mathbb{N}\),则\(\mathbb{N}=\phi\)的证明,elim先生提出如下反对意见:【因为\(\displaystyle\lim_{n \to \infty}(n-m)=\)\(\displaystyle\lim_{n \to \infty}n\ne k(\forall k,m\in\mathbb{N})\),滚驴从 v= lim n 咋回滾也不达任何自然数.证毕秒成阵毙, 滚驴回滚做空定理泡汤!】
        其实,elim反对该定理证明是意料中的事!现在春风晚霞对elim所提置疑回复于下:因为对\(\forall n,k\in\mathbb{N}\),恒有\(n-(n-k)=k\)(k为有限自然数) .所以\(\displaystyle\lim_{n \to \infty}(n=(n-k)=\)\(\displaystyle\lim_{n \to \infty}k\).所以\(\displaystyle\lim_{n \to \infty}n-\)\(\displaystyle\lim_{n \to \infty}(n-k\)=k .由于等式\(n-(n-k)=k\)(是恒等式,所以当\(m=n-k\)时便有\(\displaystyle\lim_{n \to \infty}(n-m)\)\(=\displaystyle\lim_{n \to \infty}(n-(n-k)\)\(=\displaystyle\lim_{n \to \infty}n\)\(-\displaystyle\lim_{n \to \infty}(n-k)=k\)!所以混世魔王的【从\(v=\displaystyle\lim_{n \to \infty}n\)咋回滾也不达任何自然数】只是臆测!故此elim否定定理:若\(\displaystyle\lim_{n \to \infty}n\notin\mathbb{N}\),则\(\mathbb{N}=\phi\)的妄想泡汤!
回复 支持 反对

使用道具 举报

发表于 2025-8-5 04:57 | 显示全部楼层
本帖最后由 春风晚霞 于 2025-8-6 17:27 编辑


        对定理\(\displaystyle\lim_{n \to \infty}n\notin\mathbb{N}\),则\(\mathbb{N}=\phi\)的证明,elim先生提出如下反对意见:【因为\(\displaystyle\lim_{n \to \infty}(n-m)=\)\(\displaystyle\lim_{n \to \infty}n\ne k(\forall k,m\in\mathbb{N})\),滚驴从 v= lim n 咋回滾也不达任何自然数.证毕秒成阵毙, 滚驴回滚做空定理泡汤!】
        其实,elim反对该定理证明是意料中的事!现在春风晚霞对elim所提置疑回复于下:因为对\(\forall n,k\in\mathbb{N}\),恒有\(n-(n-k)=k\)(k为有限自然数) .所以\(\displaystyle\lim_{n \to \infty}(n=(n-k)=\)\(\displaystyle\lim_{n \to \infty}k\).所以\(\displaystyle\lim_{n \to \infty}n-\)\(\displaystyle\lim_{n \to \infty}(n-k\)=k .由于等式\(n-(n-k)=k\)(是恒等式,所以当\(m=n-k\)时便有\(\displaystyle\lim_{n \to \infty}(n-m)\)\(=\displaystyle\lim_{n \to \infty}(n-(n-k)\)\(=\displaystyle\lim_{n \to \infty}n\)\(-\displaystyle\lim_{n \to \infty}(n-k)=k\)!所以混世魔王的【从\(v=\displaystyle\lim_{n \to \infty}n\)咋回滾也不达任何自然数】只是臆测!故此elim否定定理:若\(\displaystyle\lim_{n \to \infty}n\notin\mathbb{N}\),则\(\mathbb{N}=\phi\)的妄想泡汤!
回复 支持 反对

使用道具 举报

发表于 2025-8-5 08:14 | 显示全部楼层
自然数\(\displaystyle\lim_{n \to \infty}n\)不是\(\mathbb{N}\)中的最大数


        因为ω是极限序数,所以\(\nu(=\displaystyle\lim_{n \to \infty}n)\)不是ω的直接前趋,所以\(\displaystyle\lim_{n \to \infty}(n\)\(+1)≠ω\),又因ω的后继是ω+1,所以\(\displaystyle\lim_{n \to \infty}(n+1)\)也不是ω的后继。所以\(\displaystyle\lim_{n \to \infty}(n+1)<ω\)(数的三歧性),所以\(\displaystyle\lim_{n \to \infty}(n+1)\in\mathbb{N}\)(即皮亚诺公理对\(\nu=\displaystyle\lim_{n \to \infty}n\)成立)。因为\(\displaystyle\lim_{n \to \infty}(n+1)>\)\(\displaystyle\lim_{n \to \infty}n\),所以\(\nu=\displaystyle\lim_{n \to \infty}n\)不是\(\mathbb{N}\)中的最大数.
       其实,就算elim用流氓手段把\(\displaystyle\lim_{n \to \infty}n\)驱逐出\(\mathbb{N}\),你也证明不了\(\mathbb{N}\)中的元素都是有限自然数!因为\(\mathbb{N}\)中还有无穷多个诸如\(\displaystyle\lim_{n \to \infty}(n\)\(-k)\)这样的无穷元!
回复 支持 反对

使用道具 举报

发表于 2025-8-5 11:07 | 显示全部楼层

elim真了不起,你连什么是自然数?什么是自然数集?什么是无穷?什么是趋向无穷都一概不知道,连波亚诺公理,康托尔正整数生成法则都不用。居然也能证得【自然数皆有限数】,\(v=\displaystyle\lim_{n \to \infty}n\notin\mathbb{N}\)?真是不愧是民科领袖!你把“目中无人,死不要脸”的致胜秘诀发扬到了极致。你还好意思拿那些被批臭、批烂的宿帖拿来显摆,拿来胡搅蛮缠。似此流氓无赖,真他娘的羞人!
回复 支持 反对

使用道具 举报

发表于 2025-8-5 13:26 | 显示全部楼层
elim的定理【自然数皆有限数定理, \(\lim n\)不是自然数.】永远与〖elim是畜生,elim不是人〗同真!
       elim真不愧是民科领袖!不管是谁的东西,你从来都不屑于顾,截个图都断章取义。陶哲轩先生在他的《陶哲轩实分析》第三版P19页2—4行讲道:自然数能够趋向于无穷大,但它不能取到无穷大,无穷大不是自然数。但也存在〖存在其它数系,使得“无穷大”是该数系中的元素。例如基数系、序数系以及p进数系〗。并声明这些数系“完全不在本书的讨论范围之内”。
        理解陶哲轩先生的这段话应该注意以下两点:①自然数可趋向“无穷大”,这是因为在分析数学中,无穷大(即\(\infty\)是集合,是变化趋势)。所以自然数可趋向“无穷大”但不能等于“无穷大”。其实,按陶哲轩先生的观点\(\displaystyle\lim_{n \to \infty}n\)是属于\(\mathbb{N}\)的;由于elim不知道什么是\(\infty\),什么是趋于\(\infty\)。所以elim理解不了\(\displaystyle\lim_{n \to \infty}n\in\mathbb{N}\)的正确性; ②根据陶先生的“存在其它数系,使得“无穷大”是该数系中的元素。例如基数系、序数系以及p进数系”,集合论是在基数系、序数系下展开讨论的,APB先生是在十进系下展开讨论的。所以春风晚霞的定理:若\(\displaystyle\lim_{n \to \infty}n\notin\mathbb{N}\),则\(\mathbb{N}=\phi\)及APB先生“既然\(\mathbb{N}\)是无穷集,则\(\mathbb{N}\)必含无穷大”的论断也是正确的!
        elim混世魔王,你的【序列\(\{n\}\)是无穷大量,但不含无穷大项,即\(\displaystyle\lim_{n \to \infty}n\)\(\notin\mathbb{N}\)】是在\(\color{red}{基数系、序数系}\)\(\color{red}{或p进系}\)中讨论的吗?你他妈的凭什么说基数系、序数系或p进系中不含无穷大项?又是你那个狗屁不如的【底层逻辑】是吧?!elim,你连读这么短的一句话都读不懂,还他妈的很懂数学,很懂集合论?真他娘的扯淡!
回复 支持 反对

使用道具 举报

发表于 2025-8-5 21:04 | 显示全部楼层

        对定理\(\displaystyle\lim_{n \to \infty}n\notin\mathbb{N}\),则\(\mathbb{N}=\phi\)的证明,elim先生提出如下反对意见:【因为\(\displaystyle\lim_{n \to \infty}(n-m)=\)\(\displaystyle\lim_{n \to \infty}n\ne k(\forall k,m\in\mathbb{N})\),滚驴从 v= lim n 咋回滾也不达任何自然数.证毕秒成阵毙, 滚驴回滚做空定理泡汤!】
        其实,elim反对该定理证明是意料中的事!现在春风晚霞对elim所提置疑回复于下:因为对\(\forall n,k\in\mathbb{N}\),恒有\(n-(n-k)=k\)(k为有限自然数) .所以\(\displaystyle\lim_{n \to \infty}(n=(n-k)=\)\(\displaystyle\lim_{n \to \infty}k\).所以\(\displaystyle\lim_{n \to \infty}n-\)\(\displaystyle\lim_{n \to \infty}(n-k\)=k .由于等式\(n-(n-k)=k\)(是恒等式,所以当\(m=n-k\)时便有\(\displaystyle\lim_{n \to \infty}(n-m)\)\(=\displaystyle\lim_{n \to \infty}(n-(n-k)\)\(=\displaystyle\lim_{n \to \infty}n\)\(-\displaystyle\lim_{n \to \infty}(n-k)=k\)!所以混世魔王的【从\(v=\displaystyle\lim_{n \to \infty}n\)咋回滾也不达任何自然数】只是臆测!故此elim否定定理:若\(\displaystyle\lim_{n \to \infty}n\notin\mathbb{N}\),则\(\mathbb{N}=\phi\)的妄想泡汤!
回复 支持 反对

使用道具 举报

发表于 2025-8-5 21:07 | 显示全部楼层

elim真了不起,你连什么是自然数?什么是自然数集?什么是无穷?什么是趋向无穷都一概不知道,连波亚诺公理,康托尔正整数生成法则都不用。居然也能证得【自然数皆有限数】,\(v=\displaystyle\lim_{n \to \infty}n\notin\mathbb{N}\)?真是不愧是民科领袖!你把“目中无人,死不要脸”的致胜秘诀发扬到了极致。你还好意思拿那些被批臭、批烂的宿帖拿来显摆,拿来胡搅蛮缠。似此流氓无赖,真他娘的羞人!
回复 支持 反对

使用道具 举报

发表于 2025-8-6 03:03 | 显示全部楼层

        陶哲轩先生在他的《陶哲轩实分析》第三版P19页2—4行也讲了〖存在其它数系,使得“无穷大”是该数系中的元素。例如基数系、序数系以及p进数系〗。
        由于集合论是在基数系和序数系下展开讨论的,集列\(\{A_k=\{m\in\mathbb{N}:m≤k\}\}\)的极限集是在十(p=10)进数系下讨论的。所以\(\displaystyle\lim_{n \to \infty}n\in\mathbb{N}\)。同时我们根据数的三歧性原理证明了皮亚诺公理第二条对\(\displaystyle\lim_{n \to \infty}n\)成立(参见《\(\displaystyle\lim_{n \to \infty}n\)不是\(\mathbb{N}\)中最大数》的证明)。因此,elim的【\(\displaystyle\lim_{n \to \infty}n=\)\(sup\mathbb{N}\)\(\notin\mathbb{N}\)】的臆想不成立!所以\(\displaystyle\lim_{n \to \infty}n\in\mathbb{N}\)再次得到严谨证明。
        对于elim这样的民科领袖,本帖他是不会看的。他宁肯削足适靴,他也会坚持他的胡说八道。不过分享本帖,也为关注\(\displaystyle\lim_{n \to \infty}n\in\mathbb{N}\)问题的网友提供参考!
回复 支持 反对

使用道具 举报

发表于 2025-8-6 17:28 | 显示全部楼层
本帖最后由 春风晚霞 于 2025-8-6 21:32 编辑


        对定理\(\displaystyle\lim_{n \to \infty}n\notin\mathbb{N}\),则\(\mathbb{N}=\phi\)的证明,elim先生提出如下反对意见:【因为\(\displaystyle\lim_{n \to \infty}(n-m)=\)\(\displaystyle\lim_{n \to \infty}n\ne k(\forall k,m\in\mathbb{N})\),滚驴从 v= lim n 咋回滾也不达任何自然数.证毕秒成阵毙, 滚驴回滚做空定理泡汤!】
        其实,elim反对该定理证明是意料中的事!现在春风晚霞对elim所提置疑回复于下:因为对\(\forall n,k\in\mathbb{N}\),恒有\(n-(n-k)=k\)(k为有限自然数) .所以\(\displaystyle\lim_{n \to \infty}(n=(n-k)=\)\(\displaystyle\lim_{n \to \infty}k\).所以\(\displaystyle\lim_{n \to \infty}n-\)\(\displaystyle\lim_{n \to \infty}(n-k\)=k .由于等式\(n-(n-k)=k\)(是恒等式,所以当\(m=n-k\)时便有\(\displaystyle\lim_{n \to \infty}(n-m)\)\(=\displaystyle\lim_{n \to \infty}(n-(n-k)\)\(=\displaystyle\lim_{n \to \infty}n\)\(-\displaystyle\lim_{n \to \infty}(n-k)=k\)!所以混世魔王的【从\(v=\displaystyle\lim_{n \to \infty}n\)咋回滾也不达任何自然数】只是臆测!故此elim否定定理:若\(\displaystyle\lim_{n \to \infty}n\notin\mathbb{N}\),则\(\mathbb{N}=\phi\)的妄想泡汤!
回复 支持 反对

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

Archiver|手机版|小黑屋|数学中国 ( 京ICP备05040119号 )

GMT+8, 2025-8-19 15:12 , Processed in 0.097024 second(s), 15 queries .

Powered by Discuz! X3.4

Copyright © 2001-2020, Tencent Cloud.

快速回复 返回顶部 返回列表