数学中国

 找回密码
 注册
搜索
热搜: 活动 交友 discuz
查看: 72|回复: 2

\(\Huge\color{red}{春风晚霞目测法挑战elim“臭便”法 }\)

[复制链接]
发表于 2025-8-7 08:20 | 显示全部楼层 |阅读模式
本帖最后由 春风晚霞 于 2025-8-8 19:39 编辑


        elim于 2025-8-7 05:03再次贴出他反人类数学的宿帖,以证明他的【无穷交就是一种骤变】的正确性,从而间接地“证明”\(\displaystyle\lim_{n \to \infty}n\notin\mathbb{N}\)。现对其全文评析于后:
【原文】
        \(\mathbb{N}_{\infty}=\)\(\displaystyle\bigcap_{n=1}^{\infty}A_n\)\((A_k=\{m\in\mathbb{N}:m>k\}(k\in\mathbb{N})\)是\(\mathbb {N}\)的子集①.对任意的\(m\in\mathbb{N}\)易见\(m\notin\mathbb{N}\)②所以m不是\(A_1\),……,\(A_m\),\(A_{m+1}\),……的公共元,即不是\(\mathbb{N}_{\infty}=\)\(\displaystyle\bigcap_{n=1}^{\infty}A_n\)的元③.所以\(\boxed{\mathbb{N}_{\infty}=\displaystyle\bigcap_{n=1}^{\infty}A_n=\phi}\).
顽瞎目测再度泡汤:\(\displaystyle\lim_{n \to \infty}\{n+1,n+2,…\}=\)\(\{\displaystyle\lim_{n \to \infty}n+1,\displaystyle\lim_{n \to \infty}n+2,…\}\)与降列极限定义相悖④,因\(\lim n\)非自然数显为荒谬.(原文中序号为春风晚霞评述方便所加).
\(\color{red}{【评述】}\)
        ①、对于求单调集列\((A_k=\{m\in\mathbb{N}:m>k\}(k\in\mathbb{N})\)的问题,任何时候都有\(\displaystyle\bigcap_{n=1}^{\infty}A_n\subset\Omega\),式中\(\Omega\)=\(\displaystyle\bigcup_{n =1}^{\infty}A_n^c\)\(\bigcup\)\(\displaystyle\bigcap_{n=1}^{ \infty}A_n=\)\(\displaystyle\
\bigcap_{n=1}^{\infty}(A_n\cup A_n^c)=\)\(\{1,2,…\displaystyle\lim_{n \to \infty}n,\displaystyle\lim_{n \to \infty}(n+1),…\}\).所以\(\mathbb{N}_{\infty}\)非\(\mathbb{N}\)的子集!
        ②、虽然【对任意的\(m\in\mathbb{N}\)易见\(m\notin\mathbb{N}\)】,但对elim【\(m\in\mathbb{N}\)】都有\((m+j)\in\Omega\),如\(10\notin A_{10}\)但,11,12,…都属于\(A_{10}\)。所以elim【逐点排查】挂一漏万!
        ③虽然【m不是\(A_1\),……,\(A_m\),\(A_{m+1}\),…的公共元】,但是\(\displaystyle\lim_{n \to \infty}n\),\(\displaystyle\lim_{n \to \infty}(n+1)\),…是\(A_1\),…,\(A_m\),\(A_{m+1}\),…的公共元!所以\(\boxed{\mathbb{N}_{\infty}=\displaystyle\bigcap_{n=1}^{\infty}A_n\ne\phi}\)!.
        ④、因为单调集列\(A_k=\{m\in\mathbb{N}:m>k\}\)\(=\{k+1,\)\(k+2,…\}\)单调递减,根据单减集列极限集的定义(如周民强《实变函数论》P9定义8)有:
\(\displaystyle\lim_{n \to \infty}A_n=\)\(\displaystyle\bigcap_{k=1}^{\infty}A_k\)\(=\displaystyle\lim_{n \to \infty}\{(n+1),(n+2)\)\(,…\}\ne\phi\)!所以【与降列极限定义相悖】的是elim的【\(\boxed{\mathbb{N}_{\infty}=\displaystyle\bigcap_{n=1}^{\infty}A_n=\phi}\)】,故此泡汤的是elim的“臭便”之法而不是春风晚霞的目测法!

 楼主| 发表于 2025-8-7 09:39 | 显示全部楼层

       【命题】: 若集列\(\{A_k=\{m\in\mathbb{N}:m≤k\}\),则\(\displaystyle\lim_{n \to \infty}n\in\mathbb{N}\)
        【证明】:因为集列\(\{A_k=\{m\in\mathbb{N}:m≤k\}\)(已知)
易证集列\(A_k=\{1,2.…,(k-1),k\}\)单调递增。所以根据单调集列极限集的定义(如北大教材《实变函数论》P9定义1.8)有:
\(\displaystyle\lim_{n \to \infty}A_n=\)\(\displaystyle\bigcup_{n=1} ^{\infty}A_n=\)\(\{1,2,…\)\(\displaystyle\lim_{n \to \infty}(n-1)\),\(\displaystyle\lim_{n \to \infty}n\}=\)\(\mathbb{N}\),所以\(\displaystyle\lim_{n \to \infty}n\in\mathbb{N}\)!
【证毕】
回复 支持 反对

使用道具 举报

 楼主| 发表于 2025-8-8 15:39 | 显示全部楼层
目测法是数学常用方法

        春风晚霞的目测法是数学中的常用方法:如求数列极限时,我们总是先求数列通项的一般表达式\(a_n=f(n)\),再对\(a_n=f(n)\)两边取极限。又如在求数项级数和的计算中,我们总是先求该数项级数的前n项和\(S_n=f(n)\),再对等式\(S_n=f(n)\)两端取极限得\(s=\displaystyle\lim_{n \to \infty}S_n\); 在求单调集列极限集时,我们也总是先求该集列的通项表达式\(A_n=f(n)\)再根据单调极限集的定义求\(\displaystyle\lim_{n \to \infty}A_n\)\(=\displaystyle\lim_{n \to \infty}f(n)\).由于这种数学中的常规方法算出的结果与elim【骤变】之法算出的结果不一致。所以elim把这各方法贬之为目测法。
回复 支持 反对

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

Archiver|手机版|小黑屋|数学中国 ( 京ICP备05040119号 )

GMT+8, 2025-8-19 15:22 , Processed in 0.080648 second(s), 15 queries .

Powered by Discuz! X3.4

Copyright © 2001-2020, Tencent Cloud.

快速回复 返回顶部 返回列表