数学中国

 找回密码
 注册
搜索
热搜: 活动 交友 discuz
查看: 743|回复: 52

\(\huge^\star\;\,\color{red}{v:=\lim n=v+1 \textbf{反Peano公理}}\)

[复制链接]
发表于 2025-10-11 07:39 | 显示全部楼层 |阅读模式
本帖最后由 elim 于 2025-10-22 07:31 编辑

\(\because\;m\le m+k\le\sup\mathbb{N}=\displaystyle\lim_{n\to\infty}n\;(\forall m,k\in\mathbb{N})\)\(\\\)
\(\therefore\;v:=\lim n=\lim(n+k)=v+k\;(\forall k\in\mathbb{N})\)
即 \(\lim n\)不满足皮亚诺公理.


因为春风晚霞称\(\lim n\)满足皮亚诺公理,
它无疑是空前绝后全方位的数学白痴.

发表于 2025-10-14 19:15 | 显示全部楼层
本帖最后由 春风晚霞 于 2025-10-14 19:21 编辑

elim,康托尔、皮亚诺、冯\(\cdot\)诺依曼谁说了\(\displaystyle\lim_{n \to \infty}n\)\(\notin\mathbb{N}\)?周民强、菲赫金戈尔茨、陶哲轩谁的理论又推出了\(\displaystyle\lim_{n \to \infty}n=\)\(Sup\mathbb{N}\)?谁的理论又能推导出自然数\(\displaystyle\lim_{n \to \infty}(n-1)=\)\(\displaystyle\lim_{n \to \infty}n=\)\(\displaystyle\lim_{n \to \infty}n^n=\)\(Max\mathbb{N}\)?elim根本就知道什么是无穷,什么是趋向于无穷!楼上的证明恰好说明elim才是【空前绝后全方位的数学白痴】!
回复 支持 反对

使用道具 举报

发表于 2025-10-14 21:36 | 显示全部楼层
elim:康托尔、皮亚诺、冯\(\cdot\)诺依曼谁说了\(\displaystyle\lim_{n \to \infty}n\)\(\notin\mathbb{N}\)?周民强、菲赫金戈尔茨、陶哲轩谁的理论又推出了\(\displaystyle\lim_{n \to \infty}n=\)\(Sup\mathbb{N}\)?谁的理论又能推导出自然数\(\displaystyle\lim_{n \to \infty}(n-1)=\)\(\displaystyle\lim_{n \to \infty}n=\)\(\displaystyle\lim_{n \to \infty}n^n=\)\(Max\mathbb{N}\)?康托尔、皮亚诺、陶哲轩的理论都蕴含了elim要吃狗屎!在他们的哪本著述里有\(\displaystyle\lim_{n \to \infty}n\notin\mathbb{N}\)?
回复 支持 反对

使用道具 举报

发表于 2025-10-14 21:43 | 显示全部楼层

定理:若\(\displaystyle\lim_{n \to \infty}n\notin\mathbb{N}\),则\(\mathbb{N}=\phi\)

【证明:】
\begin{split}
&\because\quad v=\displaystyle\lim_{n \to \infty}n\notin\mathbb{N}\quad(已知) \\
&\therefore\quad (v-1)\notin\mathbb{N}\quad(否则v\in\mathbb{N},Peano axiom第二条)\\
&\therefore\quad (v-2)\notin\mathbb{N}\quad(否则(v-1)\in\mathbb{N},Peano axioms第二条)\\
&\therefore\quad (v-3)\notin\mathbb{N}\quad(否则(v-2)\in\mathbb{N},Peano axioms第二条)\\
&\quad\quad\vdots\quad\quad\quad\quad\vdots \\
&\therefore\quad (k+1)\notin\mathbb{N}\quad(否则(k+2)\in\mathbb{N},Peano axioms第二条)\\
&\therefore\quad k\notin\mathbb{N}\quad(否则(k+1)\in\mathbb{N},Peano axioms第二条)\\
&\quad\quad\vdots\quad\quad\quad \quad\vdots \\
&\therefore\quad 2\notin\mathbb{N}\quad(否则3\in\mathbb{N},Peano axioms第二条)\\
&\therefore\quad 1\notin\mathbb{N}\quad(否则2\in\mathbb{N},Peano axioms第二条)\\
&\therefore\quad 0\notin\mathbb{N}\quad(否则1\in\mathbb{N,}Peano axioms第二条)\\
&\therefore\quad \mathbb{N}=\phi\quad(因任意自然数都不属于\mathbb{N})
\end{split}
【证毕】
回复 支持 反对

使用道具 举报

发表于 2025-10-15 03:05 | 显示全部楼层
本帖最后由 春风晚霞 于 2025-10-15 03:15 编辑


一、皮亚公理
1、0是自然数:自然数集合的起始元素。
2、后继函数存在性:每个自然数a都有唯一后继数a'(即a+1),且a'也是自然数。
3、0非任何数的后继:0不是任何自然数的后继,避免循环(如0→1→0)。
4、后继唯一性:不同自然数的后继不同,即若a'=b',则a=b。
5、归纳公理:若子集S包含0,且当n∈S时n'∈S,则S包含全体自然数(数学归纳法的理论基础)。
二、命题:若\(\displaystyle\lim_{n \to \infty}n\notin\mathbb{N}\),则\(\mathbb{N}=\phi\)是真命题
1、陶哲轩认为〖每个自照数都是有限数(这个限是每个自然数都小于它的后继),自然数可趋向于无穷,但不等于无穷〗,所以陶哲轩每认为\(\displaystyle\lim_{n \to \infty}n\in\mathbb{N}\).注意无论是谁的《分析数学》,∞均是指集合\(N_∞=\{n|n>[\tfrac{1}{ε}]+1\}\).所以陶哲轩亦认为\(\displaystyle\lim_{n \to \infty}n\in\mathbb{N}\).
2、现行教科书《实变函数论》认为\(\displaystyle\lim_{n \to \infty}n\in\mathbb{N}\).
3、皮亚诺公理第2条支持\(\displaystyle\lim_{n \to \infty}n\in\mathbb{N}\)(参见陶哲轩自然数集是无限集的证明).
4、根据皮亚诺公理2、3、4条可证明命题:若\(\displaystyle\lim_{n \to \infty}n\notin\mathbb{N}\),则\(\mathbb{N}=\phi\)是真命题.
elim之所以证明不了命题:若\(\displaystyle\lim_{n \to \infty}n\notin\mathbb{N}\),则\(\mathbb{N}=\phi\)是因为你根本就不知道什么是无穷,什么是趋向于无穷?根本就不知道e氏\(\mathbb{N}_∞\)只是你定义出来反现行数学的道具。
回复 支持 反对

使用道具 举报

发表于 2025-10-15 06:02 | 显示全部楼层

一、皮亚公理
1、0是自然数:自然数集合的起始元素。
2、后继函数存在性:每个自然数a都有唯一后继数a'(即a+1),且a'也是自然数。
3、0非任何数的后继:0不是任何自然数的后继,避免循环(如0→1→0)。
4、后继唯一性:不同自然数的后继不同,即若a'=b',则a=b。
5、归纳公理:若子集S包含0,且当n∈S时n'∈S,则S包含全体自然数(数学归纳法的理论基础)。
二、命题:若\(\displaystyle\lim_{n \to \infty}n\notin\mathbb{N}\),则\(\mathbb{N}=\phi\)是真命题
1、陶哲轩认为〖每个自照数都是有限数(这个限是每个自然数都小于它的后继),自然数可趋向于无穷,但不等于无穷〗,所以陶哲轩每认为\(\displaystyle\lim_{n \to \infty}n\in\mathbb{N}\).注意无论是谁的《分析数学》,∞均是指集合\(N_∞=\{n|n>[\tfrac{1}{ε}]+1\}\).所以陶哲轩亦认为\(\displaystyle\lim_{n \to \infty}n\in\mathbb{N}\).
2、现行教科书《实变函数论》认为\(\displaystyle\lim_{n \to \infty}n\in\mathbb{N}\).
3、皮亚诺公理第2条支持\(\displaystyle\lim_{n \to \infty}n\in\mathbb{N}\)(参见陶哲轩自然数集是无限集的证明).
4、根据皮亚诺公理2、3、4条可证明命题:若\(\displaystyle\lim_{n \to \infty}n\notin\mathbb{N}\),则\(\mathbb{N}=\phi\)是真命题.
elim之所以证明不了命题:若\(\displaystyle\lim_{n \to \infty}n\notin\mathbb{N}\),则\(\mathbb{N}=\phi\)是因为你根本就不知道什么是无穷,什么是趋向于无穷?根本就不知道e氏\(\mathbb{N}_∞\)只是你定义出来反现行数学的道具。
回复 支持 反对

使用道具 举报

发表于 2025-10-15 06:31 | 显示全部楼层
本帖最后由 春风晚霞 于 2025-10-15 13:57 编辑


一、皮亚公理
1、0是自然数:自然数集合的起始元素。
2、后继函数存在性:每个自然数a都有唯一后继数a'(即a+1),且a'也是自然数。
3、0非任何数的后继:0不是任何自然数的后继,避免循环(如0→1→0)。
4、后继唯一性:不同自然数的后继不同,即若a'=b',则a=b。
5、归纳公理:若子集S包含0,且当n∈S时n'∈S,则S包含全体自然数(数学归纳法的理论基础)。
二、命题:若\(\displaystyle\lim_{n \to \infty}n\notin\mathbb{N}\),则\(\mathbb{N}=\phi\)是真命题
1、陶哲轩认为〖每个自照数都是有限数(这个限是每个自然数都小于它的后继),自然数可趋向于无穷,但不等于无穷〗,所以陶哲轩每认为\(\displaystyle\lim_{n \to \infty}n\in\mathbb{N}\).注意无论是谁的《分析数学》,∞均是指集合\(N_∞=\{n|n>[\tfrac{1}{ε}]+1\}\).所以陶哲轩亦认为\(\displaystyle\lim_{n \to \infty}n\in\mathbb{N}\).
2、现行教科书《实变函数论》认为\(\displaystyle\lim_{n \to \infty}n\in\mathbb{N}\).
3、皮亚诺公理第2条支持\(\displaystyle\lim_{n \to \infty}n\in\mathbb{N}\)(参见陶哲轩自然数集是无限集的证明).
4、根据皮亚诺公理2、3、4条可证明命题:若\(\displaystyle\lim_{n \to \infty}n\notin\mathbb{N}\),则\(\mathbb{N}=\phi\)是真命题.
elim之所以证明不了命题:若\(\displaystyle\lim_{n \to \infty}n\notin\mathbb{N}\),则\(\mathbb{N}=\phi\)是因为你根本就不知道什么是无穷,什么是趋向于无穷?根本就不知道e氏\(\mathbb{N}_∞\)只是你定义出来反现行数学的道具。
回复 支持 反对

使用道具 举报

发表于 2025-10-15 13:57 | 显示全部楼层

一、皮亚公理
1、0是自然数:自然数集合的起始元素。
2、后继函数存在性:每个自然数a都有唯一后继数a'(即a+1),且a'也是自然数。
3、0非任何数的后继:0不是任何自然数的后继,避免循环(如0→1→0)。
4、后继唯一性:不同自然数的后继不同,即若a'=b',则a=b。
5、归纳公理:若子集S包含0,且当n∈S时n'∈S,则S包含全体自然数(数学归纳法的理论基础)。
二、命题:若\(\displaystyle\lim_{n \to \infty}n\notin\mathbb{N}\),则\(\mathbb{N}=\phi\)是真命题
1、陶哲轩认为〖每个自照数都是有限数(这个限是每个自然数都小于它的后继),自然数可趋向于无穷,但不等于无穷〗,所以陶哲轩每认为\(\displaystyle\lim_{n \to \infty}n\in\mathbb{N}\).注意无论是谁的《分析数学》,∞均是指集合\(N_∞=\{n|n>[\tfrac{1}{ε}]+1\}\).所以陶哲轩亦认为\(\displaystyle\lim_{n \to \infty}n\in\mathbb{N}\).
2、现行教科书《实变函数论》认为\(\displaystyle\lim_{n \to \infty}n\in\mathbb{N}\).
3、皮亚诺公理第2条支持\(\displaystyle\lim_{n \to \infty}n\in\mathbb{N}\)(参见陶哲轩自然数集是无限集的证明).
4、根据皮亚诺公理2、3、4条可证明命题:若\(\displaystyle\lim_{n \to \infty}n\notin\mathbb{N}\),则\(\mathbb{N}=\phi\)是真命题.
elim之所以证明不了命题:若\(\displaystyle\lim_{n \to \infty}n\notin\mathbb{N}\),则\(\mathbb{N}=\phi\)是因为你根本就不知道什么是无穷,什么是趋向于无穷?根本就不知道e氏\(\mathbb{N}_∞\)只是你定义出来反现行数学的道具。
回复 支持 反对

使用道具 举报

发表于 2025-10-16 10:11 | 显示全部楼层

一、皮亚公理
1、0是自然数:自然数集合的起始元素。
2、后继函数存在性:每个自然数a都有唯一后继数a'(即a+1),且a'也是自然数。
3、0非任何数的后继:0不是任何自然数的后继,避免循环(如0→1→0)。
4、后继唯一性:不同自然数的后继不同,即若a'=b',则a=b。
5、归纳公理:若子集S包含0,且当n∈S时n'∈S,则S包含全体自然数(数学归纳法的理论基础)。
二、命题:若\(\displaystyle\lim_{n \to \infty}n\notin\mathbb{N}\),则\(\mathbb{N}=\phi\)是真命题
1、陶哲轩认为〖每个自照数都是有限数(这个限是每个自然数都小于它的后继),自然数可趋向于无穷,但不等于无穷〗,所以陶哲轩每认为\(\displaystyle\lim_{n \to \infty}n\in\mathbb{N}\).注意无论是谁的《分析数学》,∞均是指集合\(N_∞=\{n|n>[\tfrac{1}{ε}]+1\}\).所以陶哲轩亦认为\(\displaystyle\lim_{n \to \infty}n\in\mathbb{N}\).
2、现行教科书《实变函数论》认为\(\displaystyle\lim_{n \to \infty}n\in\mathbb{N}\).
3、皮亚诺公理第2条支持\(\displaystyle\lim_{n \to \infty}n\in\mathbb{N}\)(参见陶哲轩自然数集是无限集的证明).
4、根据皮亚诺公理2、3、4条可证明命题:若\(\displaystyle\lim_{n \to \infty}n\notin\mathbb{N}\),则\(\mathbb{N}=\phi\)是真命题.
elim之所以证明不了命题:若\(\displaystyle\lim_{n \to \infty}n\notin\mathbb{N}\),则\(\mathbb{N}=\phi\)是因为你根本就不知道什么是无穷,什么是趋向于无穷?根本就不知道e氏\(\mathbb{N}_∞\)只是你定义出来反现行数学的道具。
回复 支持 反对

使用道具 举报

发表于 2025-10-16 14:17 | 显示全部楼层

       由于elim根本不知道什么是自然数?什么是无穷?什么是趋向无穷?什么是无穷数?什么是超穷数?所以elim总结出来的一切“理论”均不自洽,也不与现行数学兼容。
        一、什么是自然数?
        现行教材对自然数有两种定义:
        定义1(康托尔定义)有限集合的基数称作自然数。
        显然康托尔是认同无穷自然数的,因为在康托尔非负整数集\(\Omega=\)\(\displaystyle\bigcup_{n\in\mathbb{N}}\Omega_j=\)\(\{j\omega,j\omega+1,j\omega+2,……j\omega+\nu\}\),当j=0时,\(\Omega_0=\)\(\{0,1,2,\)\(…,\nu\}\),其中\(\nu=\)\(\displaystyle\lim_{n\to\infty}n\),因此我们有理由认为康托尔是支持\(\displaystyle\lim_{n\to\infty}n\in\mathbb{N}\)的。
        定义2(即皮亚诺公理定义)满足皮亚公理的非负整数叫自然数
        现在我们证明数\(\nu=\displaystyle\lim_{n\to\infty}n\)满足皮亚诺公理:因数\(\nu\ne0\),所以\(\nu\)有直前\(\nu-1\),同理\(\nu-1\)有直前\(\nu-2\),…根据定理〖若\(\displaystyle\lim_{n \to \infty}n\notin\)\(\mathbb{N}\),则\(\mathbb{N}=\phi\).〗所以皮亚诺亦认可\(\displaystyle\lim_{n \to \infty}n\in\mathbb{N}\),同时,我们还可以证明\(\displaystyle\lim_{n \to \infty}(n+j)\in\mathbb{N}\).故此\(\displaystyle\lim_{n \to \infty}n\)满足皮亚诺公理,所以\(\displaystyle\lim_{n \to \infty}n\)是自然数。
        二、什么是无穷,什么是趋向无穷?
        定义1(威尔斯托拉斯定义)对\(\color{red}{\forall\varepsilon>0,\exists N(=[\tfrac{1}{\varepsilon}]+1)\in\mathbb{N}}\)称\(\mathbb{N}_{\infty}=\)\(\{n|n> N(=[\tfrac{1}{\varepsilon}]+1)\}为\infty\)
        定义2 当\(n\in\mathbb{N}\)时,称n趋向于\(\infty\),记为\(n\to\infty\).
        根据威尔斯托拉斯关于\(\mathbb{N}_{\infty}\)的定义,\(\displaystyle\lim_{n \to \infty}n\in\mathbb{N}\).
        三、什么是无穷数,什么是真穷数?
        在现行数学理论中我们称集合\(\mathbb{N}_{\infty}=\)\(\{n|n> N(=[\tfrac{1}{\varepsilon}]+1)\)中的每个数都叫无穷数,而集合\(\Omega_j=\)\(\{j\omega,j\omega+1,j\omega+2,…j\omega+\nu\}\)(\(j\ne 0\))中的每个数都叫超穷数!显然大学者elim的\(\displaystyle\lim_{n \to \infty}n\notin\mathbb{N}\),\(\mathbb{N}_{\infty}=\phi\)都不自洽,也不与现行数学兼容。
        我知道我写这些elim是不会看的,不过把这些东西写出来,也算是对盲目参加elim培训的网友的一点友情提示吧!
回复 支持 反对

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

Archiver|手机版|小黑屋|数学中国 ( 京ICP备05040119号 )

GMT+8, 2025-11-29 04:43 , Processed in 0.123003 second(s), 15 queries .

Powered by Discuz! X3.4

Copyright © 2001-2020, Tencent Cloud.

快速回复 返回顶部 返回列表