|
|
本帖最后由 qingjiao 于 2014-9-28 16:57 编辑
可以推广到p=5,p=7的情况你自己试试。
p=5时余数为0, 1, 2, 3, 4, 相应的r^5=0, 1, 32, 243, 1024, 若排除0,四种余数5次方的组合如下:
................1.....32....243.....1024
......1........2.....33....244.....1025
....32......33.....64.....275....1056
..243.....244...275.....486....1267
1024...1025..1056...1267...2048
再排除1025和275,实质剩下8种组合,如2,5除余2,25除余2,记为2...2/5...2/25,余类推:
2.......2/5.....2/25, 33.......3/5...8/25, 64......4/5....14/25, 244.....4/5...19/25
486...1/5...11/25, 1056...1/5...6/25, 1267...2/5...17/25, 2048...3/5...23/25
另一方面,单个余数1,2,3,4的5次方被5和25除的情况是:
1.....1/5.....1/25, 32.......2/5...7/25, 243....3/5....18/25, 1024...4/5...24/25
显然,若r1,r2,r3全不为0,则r1^5+r2^5和r3^5无法做到被5及25除时余数均相等。因此只能是其中之一为0,即a,b,c之一含有5因子。 |
|