|

楼主 |
发表于 2015-3-17 09:08
|
显示全部楼层
根据公式可证不大于x的素数间距小于lnx的平方,这是小区间素数分布的最好结果。证明孪生素数猜想。
孪生素数猜想证明
设正整数n,p为不大于√(n+2)的素数,相差2的两数m和(m+2),若
m≠0modp 且 (m+2)≠0modp,则m, (m+2)为孪生素数。
m≠0modp是去掉模p余0的数,(m+2)≠0modp是去掉模p余(p-2)的数。在前(n+2)个正整数中去掉模p余0和模p余(p-2)的两个同余类数,余下的数m就能满足m和(m+2)为孪生素数。当p≥5时,余下同余数类大于去掉同余数类,且p≤√(n+2),所以,随着n的增大,余下数m的个数增大。所以孪生素数无穷。所以孪生素数猜想正确。
|
|