数学中国

 找回密码
 注册
搜索
热搜: 活动 交友 discuz
查看: 8126|回复: 12

四色平面分区与五色球体分区探索

[复制链接]
发表于 2018-9-4 14:47 | 显示全部楼层 |阅读模式
本帖最后由 lkPark 于 2018-9-4 15:00 编辑

色态分区问题涉及色态漂移,平面的色态漂移是分裂的,而某投影锥內的色态漂移同时具有分裂性和同一性,在色态漂移同一性的条件下使得锥点处不会发生反向色态漂移,或者说同一性形成了投影锥,即球体分区只需五色。   王军     著
 楼主| 发表于 2018-9-6 21:54 | 显示全部楼层
怎么猪都一声不吭?
发表于 2018-9-7 11:38 | 显示全部楼层
猪来吭一声,发个问:解决四色问题的,会是雷明吗?
 楼主| 发表于 2018-9-7 12:21 | 显示全部楼层
wangyangke 发表于 2018-9-7 11:38
猪来吭一声,发个问:解决四色问题的,会是雷明吗?


不是雷明!他没有色态漂移的概念所以他无法证明四色定理。
发表于 2018-9-7 12:40 | 显示全部楼层
lkPark 发表于 2018-9-7 12:21
不是雷明!他没有色态漂移的概念所以他无法证明四色定理。

看来是楼猪了?!
还到大峡谷去漂移了??
发表于 2018-9-7 14:58 | 显示全部楼层
猪再吭一声:


定理:在四色方面,任在深——申一言比雷明——雷明85639720稍胜一筹。
论证:在四色方面,任在深——申一言轻而易举的拿出两幅四色图,其后任人评说;而两幅四色图的四色水准与雷明——雷明85639720研究四色N多年、四色著述四色著作篇幅宏富浩繁所说的那个四色东东不相上下;任在深——申一言在费时和精力投入上明显占优了。刘忠友——申一言的论坛主业单位论,你雷明————雷明85639720的论坛主业四色;任在深——申一言轻而易举的拿出两幅四色图,任人评说,一副踌躇满志、岿然不动的单位论创始人的姿态;而雷明——雷明85639720在触及其要害难点疑点时,在四色濒临向五色缴械投降或在四色雷明——雷明85639720向五色投降的前后每每摆谱、卖派头、恼羞成怒;没有底气,多的是怒气、怨气。
由此有定理:在四色方面,任在深——申一言比雷明——雷明85639720稍胜一筹。

由上定理引申出定理:在雷明解决了四色问题的前提下,刘忠友也解决了四色问题。
发表于 2018-9-7 16:53 | 显示全部楼层
引申出定理:在雷明解决了四色问题的前提下,刘忠友也解决了四色问题。
发表于 2018-9-8 05:29 | 显示全部楼层
结论汇总:
解决四色问题的,不是雷明!
wangyangke太无聊了,你的脸皮也太厚了!!
在四色方面,任在深——申一言比雷明——雷明85639720稍胜一筹。
在雷明解决了四色问题的前提下,刘忠友也解决了四色问题。
您需要登录后才可以回帖 登录 | 注册

本版积分规则

Archiver|手机版|小黑屋|数学中国 ( 京ICP备05040119号 )

GMT+8, 2025-8-2 11:45 , Processed in 0.096732 second(s), 15 queries .

Powered by Discuz! X3.4

Copyright © 2001-2020, Tencent Cloud.

快速回复 返回顶部 返回列表