|
|
(x+y)^2+y^2=4
(x+y)^2=4-y^2≥0
∴y∈[-2,2]
设y=2sint t∈[-π/2,π/2]
由x^2+2xy+2y^2=4
得
x1=-y+√4-y^2=-2sint+2cost
x2=-y-√4-y^2=-2sint-2cost
x1y=(-2sint+2cost)2sint=-4(sint)^2+4sintcost=-2+2cos2t+2sin2t=-2+2√2sin(2t+π/4)∈[-2- 2√2,-2+2√2]
同理:x2y=(-2sint-2cost)2sint=-4(sint)^2-4sintcost=-2+2cos2t-2sin2t=-2+2√2cos(2t+π/4)∈[-2- 2√2,-2+2√2]
∴xy∈[-2-2√2,-2+2√2] |
|