数学中国

 找回密码
 注册
搜索
热搜: 活动 交友 discuz
查看: 4305|回复: 6

Countability of antichains

[复制链接]
发表于 2010-9-25 11:13 | 显示全部楼层 |阅读模式
[这个贴子最后由kindlychung在 2010/09/25 11:13am 第 1 次编辑]

I think the set of antichains is a subset of P(P(B)). Intuition tells me it';s uncountable, yet I can';t provide a proof.

本帖子中包含更多资源

您需要 登录 才可以下载或查看,没有帐号?注册

x
发表于 2010-9-25 13:37 | 显示全部楼层

Countability of antichains

Sure there are uncountable antichains of P(N).
Let N1 be odd numbers of N, N2 = N \ N1
Let g: N1 → N2 be the natural 1-1 correspondence.
Define A = { E ∪ g(N1 \ E)  | E ∈ P(N1) }
You can see A is an antichain of P(N) that is uncountable.
Well this is a problem I never encounter before. Nice solutioin of mine!
 楼主| 发表于 2010-9-26 01:01 | 显示全部楼层

Countability of antichains

Nice. Thanks.
发表于 2010-9-26 10:47 | 显示全部楼层

Countability of antichains

Prove that A = { E ∪ g(N1 \ E)  | E ∈ P(N1) } is
(1) uncountable
(2) S, T ∈ A, S≠T → S△T is not empty   i.e. neither one is subset of the other.
Proof. Assume that E,F ∈ P(N1) and  E≠F, then
(1) (E ∪ g(N1 \ E))∩N1 = E ≠ F = (F ∪ g(N1 \ F))∩N1
    hence  (E ∪ g(N1 \ E))  ≠  (F ∪ g(N1 \ F))
    therefore |A| = |P(N1)| is uncountable
(2) If (E ∪ g(N1\E)) is a subset of  F = (F ∪ g(N1\F))
    then E = (E ∪ g(N1\E))∩N1 is a subset of (F ∪ g(N1\F))∩N1 = F
    So N1\E is not a subset of N1\F and
    g(N1\E) = (E ∪ g(N1 \ E))∩N2 is not a subset of g(N1\F)== (E ∪ g(N1\F))∩N2
    this implies that (E ∪ g(N1\E)) is not a subset of  F = (F ∪ g(N1\F))
    a contradiction. Therefore none pair of elements in A can be a chain in the sense of one is a subset of the other.
    and so
发表于 2010-10-7 16:45 | 显示全部楼层

Countability of antichains

为老外顶帖,为 elimqiu 顶帖,乐得赚积分,,,
发表于 2010-10-7 19:48 | 显示全部楼层

Countability of antichains

下面引用由wangyangkee2010/10/07 04:45pm 发表的内容:
为老外顶帖,为 elimqiu 顶帖,乐得赚积分,,,
是的,不为别的,外国朋友嘛。。
发表于 2010-10-7 22:07 | 显示全部楼层

Countability of antichains

眼神有问题
楼主多半是中国人
有可能是在外国留学的。猜测可能是美国
您需要登录后才可以回帖 登录 | 注册

本版积分规则

Archiver|手机版|小黑屋|数学中国 ( 京ICP备05040119号 )

GMT+8, 2025-6-30 02:34 , Processed in 0.097980 second(s), 16 queries .

Powered by Discuz! X3.4

Copyright © 2001-2020, Tencent Cloud.

快速回复 返回顶部 返回列表