|
gsh(2n=q+2(n-q))- gsh(2n= ht + hu ) = gsh(2n= pi + pj )+ gsh(2n= pi + hr )+ gsh(2n= hk + pj ). (1) 由(1)可得: gsh(2n=q+2(n-q))- gsh(2n= ht + hu )+ gsh(2n= pi + pj ) = 2 gsh(2n= pi + pj )+ gsh(2n= pi + hr )+ gsh( 2n= hk + pj ) = gsh(3≤p≤2n-2)* (2) 由(2)可得: gsh(2n= pi + pj ) = gsh(3≤p≤2n-2)*-{gsh(2n=q+(2n-q))- gsh(2n= ht + hu )} (3) 如果 2︱n,那么 gsh(3≤p≤2n-2)*= gsh(3≤p≤2n-2),由(3)可得: gsh(2n= pi + pj ) = gsh(3≤p≤2n-2)-{gsh(2n=q+(2n-q))- gsh(2n= ht + hu )} (B0) = gsh(3≤p≤2n-2)-{0.5n-1- gsh(2n= ht + hu )},(2︱n) (B1) ≈  (2n-2)-{0.5n- gsh(2n= ht + hu )},(n→∞). (B2) 如果 n∈H,那么 gsh(3≤p≤2n-2)*= gsh(3≤p≤2n-2),由(3)也可得: gsh(2n= pi + pj ) = gsh(3≤p≤2n-2)-{gsh(2n=q+(2n-q))- gsh(2n= ht + hu )} (C0) = gsh(3≤p≤2n-2)-{0.5(n-1)- gsh(2n= ht + hu )},(n∈H) (C1) ≈ (2n-2)-{0.5n- gsh(2n= ht + hu )}, (n→∞). (C3) 如果 n∈P,那么 gsh(3≤p≤2n-2)*= gsh(3≤p≤2n-2)+1,由(3)可得:
9 gsh(2n= pi + pj ) = gsh(3≤p≤2n-2)+1-{gsh(2n=q+(2n-q))- gsh(2n= ht + hu )} = gsh( 3≤p≤2n-2)+1-{0.5(n-1)- gsh(2n= ht + hu )},(n∈P) (C2) ≈ (2n-2)-{0.5n- gsh(2n= ht + hu )}, (n→∞). (C3)。妙,实在是妙,妙不可言。 |
|