数学中国

 找回密码
 注册
搜索
热搜: 活动 交友 discuz
查看: 8165|回复: 14

[趣味数学]求几何体的体积

[复制链接]
发表于 2011-9-7 09:59 | 显示全部楼层 |阅读模式

两个相同形状的圆柱体相交,成十字,问公共部分的几何体形状如何,该几何体的体积如何求?能用初等数学搞定吗?
我感觉是2个底面重合的正4棱锥,体积好求,如图示,请高手指点!

本帖子中包含更多资源

您需要 登录 才可以下载或查看,没有帐号?注册

x
 楼主| 发表于 2011-9-7 10:32 | 显示全部楼层

[趣味数学]求几何体的体积

我的想法对吗?希望朋友看看,发言!
发表于 2011-9-7 10:33 | 显示全部楼层

[趣味数学]求几何体的体积

这是一个经典问题。
陆教授会给出精彩解答的,慢慢等吧。
发表于 2011-9-7 10:39 | 显示全部楼层

[趣味数学]求几何体的体积

下面引用由ysr2011/09/07 09:59am 发表的内容:
两个相同形状的圆柱体相交,成十字,问公共部分的几何体形状如何,该几何体的体积如何求?能用初等数学搞定吗?
我感觉是2个底面重合的正4棱锥,体积好求,如图示,请高手指点!

下面是以前我在《数学中国》论坛发表过的一个帖子:

本帖子中包含更多资源

您需要 登录 才可以下载或查看,没有帐号?注册

x
 楼主| 发表于 2011-9-7 10:39 | 显示全部楼层

[趣味数学]求几何体的体积

谢谢朋友关注!
 楼主| 发表于 2011-9-14 22:16 | 显示全部楼层

[趣味数学]求几何体的体积

谢谢陆教授,我才看到!该几何体不是棱锥,侧面为弧形,棱为曲线,不知古人如何得出体积的?
发表于 2011-9-15 09:37 | 显示全部楼层

[趣味数学]求几何体的体积

这个题目是大学一年级的典型微积分练习题。如果不用积分方法做,那就得找一个体积容易计算的另一个几何体,放在这个怪东西的旁边,然后用许多互相平行的平面去截它们,如果任何一个截面在两个几何体上切割出的两个平面的面积都相等,那它们一定具有相同的体积。古人可能就是使用的这种方法吧?这好像叫什么“祖冲之他儿子定理”——因为他儿子的名字中有个字不认识,也打不出来——所以就简称为“祖儿定理”吧。
发表于 2011-9-15 09:48 | 显示全部楼层

[趣味数学]求几何体的体积

祖暅
暅 ①xuǎn 太阳的光晕。 ②gèng 晒。多用于人名。   祖暅:我国著名数学家   祖暅与他的父亲祖冲之(我国著名的数学家)一起,用巧妙的方法解决了球体体积的计算.他们当时采用的一条原理是:"幂势既同,则积不容异."意即,位于两平行平面之间的两个立体,被任一平行于这两平面的平面所截,如果两个截面的面积恒相等,则这两个立体的体积相等.这一原理,在西文被称为卡瓦列利原理, 但这是在祖氏以后一千多年才由卡氏发现的.为了纪念祖氏父子发现这一原理的重大贡献,大家也称这原理为"祖暅原理".
发表于 2011-9-15 23:38 | 显示全部楼层

[趣味数学]求几何体的体积

[这个贴子最后由luyuanhong在 2011/09/15 11:52pm 第 1 次编辑]
下面引用由天山草2011/09/15 09:37am 发表的内容:
这个题目是大学一年级的典型微积分练习题。如果不用积分方法做,那就得找一个体积容易计算的另一个几何体,放在这个怪东西的旁边,然后用许多互相平行的平面去截它们,如果任何一个截面在两个几何体上切割出的两 ...

天山草说得对,具体做法如下:

本帖子中包含更多资源

您需要 登录 才可以下载或查看,没有帐号?注册

x
 楼主| 发表于 2011-9-18 15:13 | 显示全部楼层

[趣味数学]求几何体的体积

祖GENG原理好,谢谢陆教授和各位高手!证明很巧妙!
您需要登录后才可以回帖 登录 | 注册

本版积分规则

Archiver|手机版|小黑屋|数学中国 ( 京ICP备05040119号 )

GMT+8, 2025-7-14 05:43 , Processed in 0.106584 second(s), 16 queries .

Powered by Discuz! X3.4

Copyright © 2001-2020, Tencent Cloud.

快速回复 返回顶部 返回列表