|
如果 把偶数M的素对分为两类:
条件a:两个数都不能被√(M-2)里面的所有素数整除;其数量记为S1(m);
条件b:大数不能被√(M-2)里面的所有素数整除而小数为√(M-2)里面的某个素数;其数量记为S2(m);
偶数全部的素对数量 S(m)则有 S(m)=S1(m)+S2(m)。
那么计算偶数的连乘式主要就是反映了符合条件a类的素对数量的变化情况。
在小偶数区域,连乘式的计算值与S1(m)的变化情况是比较接近的。
比如100里面偶数的素对计算实例:
Sp(m):素数连乘式四舍五入后取整。
s1(m)——即是不含小于√M的素数的素对数量。
δ1(m)—— 即为Sp(m)对s1(m)的相对误差。
δ(m)—— 即为Sp(m)对全部素对S(m)的相对误差。
M= 6 ,S(m)= 1 ( s1= 1 ,s2= 0 ), Sp(m)≈ 1 ,δ(m)≈ 0 ,δ1(m)≈ 0
M= 8 ,S(m)= 1 ( s1= 1 ,s2= 0 ), Sp(m)≈ 1 ,δ(m)≈ 0 ,δ1(m)≈ 0
M= 10 ,S(m)= 2 ( s1= 2 ,s2= 0 ), Sp(m)≈ 1 ,δ(m)≈-.5 ,δ1(m)≈-.5
M= 12 ,S(m)= 1 ( s1= 1 ,s2= 0 ), Sp(m)≈ 1 ,δ(m)≈ 0 ,δ1(m)≈ 0
M= 14 ,S(m)= 2 ( s1= 1 ,s2= 1 ), Sp(m)≈ 1 ,δ(m)≈-.5 ,δ1(m)≈ 0
M= 16 ,S(m)= 2 ( s1= 1 ,s2= 1 ), Sp(m)≈ 1 ,δ(m)≈-.5 ,δ1(m)≈ 0
M= 18 ,S(m)= 2 ( s1= 2 ,s2= 0 ), Sp(m)≈ 3 ,δ(m)≈ .5 ,δ1(m)≈ .5
M= 20 ,S(m)= 2 ( s1= 1 ,s2= 1 ), Sp(m)≈ 1 ,δ(m)≈-.5 ,δ1(m)≈ 0
M= 22 ,S(m)= 3 ( s1= 2 ,s2= 1 ), Sp(m)≈ 2 ,δ(m)≈-.333 ,δ1(m)≈ 0
M= 24 ,S(m)= 3 ( s1= 3 ,s2= 0 ), Sp(m)≈ 3 ,δ(m)≈ 0 ,δ1(m)≈ 0
M= 26 ,S(m)= 3 ( s1= 2 ,s2= 1 ), Sp(m)≈ 1 ,δ(m)≈-.667 ,δ1(m)≈-.5
M= 28 ,S(m)= 2 ( s1= 1 ,s2= 1 ), Sp(m)≈ 1 ,δ(m)≈-.5 ,δ1(m)≈ 0
M= 30 ,S(m)= 3 ( s1= 3 ,s2= 0 ), Sp(m)≈ 4 ,δ(m)≈ .333 ,δ1(m)≈ .333
M= 32 ,S(m)= 2 ( s1= 1 ,s2= 1 ), Sp(m)≈ 1 ,δ(m)≈-.5 ,δ1(m)≈ 0
M= 34 ,S(m)= 4 ( s1= 2 ,s2= 2 ), Sp(m)≈ 2 ,δ(m)≈-.5 ,δ1(m)≈ 0
M= 36 ,S(m)= 4 ( s1= 3 ,s2= 1 ), Sp(m)≈ 3 ,δ(m)≈-.25 ,δ1(m)≈ 0
M= 38 ,S(m)= 2 ( s1= 2 ,s2= 0 ), Sp(m)≈ 2 ,δ(m)≈ 0 ,δ1(m)≈ 0
M= 40 ,S(m)= 3 ( s1= 2 ,s2= 1 ), Sp(m)≈ 2 ,δ(m)≈-.333 ,δ1(m)≈ 0
M= 42 ,S(m)= 4 ( s1= 3 ,s2= 1 ), Sp(m)≈ 4 ,δ(m)≈ 0 ,δ1(m)≈ .333
M= 44 ,S(m)= 3 ( s1= 2 ,s2= 1 ), Sp(m)≈ 2 ,δ(m)≈-.333 ,δ1(m)≈ 0
M= 46 ,S(m)= 4 ( s1= 2 ,s2= 2 ), Sp(m)≈ 2 ,δ(m)≈-.5 ,δ1(m)≈ 0
M= 48 ,S(m)= 5 ( s1= 4 ,s2= 1 ), Sp(m)≈ 4 ,δ(m)≈-.2 ,δ1(m)≈ 0
M= 50 ,S(m)= 4 ( s1= 3 ,s2= 1 ), Sp(m)≈ 2 ,δ(m)≈-.5 ,δ1(m)≈-.333
M= 52 ,S(m)= 3 ( s1= 2 ,s2= 1 ), Sp(m)≈ 2 ,δ(m)≈-.333 ,δ1(m)≈ 0
M= 54 ,S(m)= 5 ( s1= 4 ,s2= 1 ), Sp(m)≈ 4 ,δ(m)≈-.2 ,δ1(m)≈ 0
M= 56 ,S(m)= 3 ( s1= 2 ,s2= 1 ), Sp(m)≈ 2 ,δ(m)≈-.333 ,δ1(m)≈ 0
M= 58 ,S(m)= 4 ( s1= 3 ,s2= 1 ), Sp(m)≈ 2 ,δ(m)≈-.5 ,δ1(m)≈-.333
M= 60 ,S(m)= 6 ( s1= 5 ,s2= 1 ), Sp(m)≈ 5 ,δ(m)≈-.167 ,δ1(m)≈ 0
M= 62 ,S(m)= 3 ( s1= 2 ,s2= 1 ), Sp(m)≈ 2 ,δ(m)≈-.333 ,δ1(m)≈ 0
M= 64 ,S(m)= 5 ( s1= 3 ,s2= 2 ), Sp(m)≈ 2 ,δ(m)≈-.6 ,δ1(m)≈-.333
M= 66 ,S(m)= 6 ( s1= 4 ,s2= 2 ), Sp(m)≈ 5 ,δ(m)≈-.167 ,δ1(m)≈ .25
M= 68 ,S(m)= 2 ( s1= 1 ,s2= 1 ), Sp(m)≈ 2 ,δ(m)≈ 0 ,δ1(m)≈ 1
M= 70 ,S(m)= 5 ( s1= 4 ,s2= 1 ), Sp(m)≈ 4 ,δ(m)≈-.2 ,δ1(m)≈ 0
M= 72 ,S(m)= 6 ( s1= 5 ,s2= 1 ), Sp(m)≈ 5 ,δ(m)≈-.167 ,δ1(m)≈ 0
M= 74 ,S(m)= 5 ( s1= 3 ,s2= 2 ), Sp(m)≈ 3 ,δ(m)≈-.4 ,δ1(m)≈ 0
M= 76 ,S(m)= 5 ( s1= 3 ,s2= 2 ), Sp(m)≈ 3 ,δ(m)≈-.4 ,δ1(m)≈ 0
M= 78 ,S(m)= 7 ( s1= 5 ,s2= 2 ), Sp(m)≈ 5 ,δ(m)≈-.286 ,δ1(m)≈ 0
M= 80 ,S(m)= 4 ( s1= 3 ,s2= 1 ), Sp(m)≈ 4 ,δ(m)≈ 0 ,δ1(m)≈ .333
M= 82 ,S(m)= 5 ( s1= 4 ,s2= 1 ), Sp(m)≈ 3 ,δ(m)≈-.4 ,δ1(m)≈-.25
M= 84 ,S(m)= 8 ( s1= 7 ,s2= 1 ), Sp(m)≈ 7 ,δ(m)≈-.125 ,δ1(m)≈ 0
M= 86 ,S(m)= 5 ( s1= 3 ,s2= 2 ), Sp(m)≈ 3 ,δ(m)≈-.4 ,δ1(m)≈ 0
M= 88 ,S(m)= 4 ( s1= 3 ,s2= 1 ), Sp(m)≈ 3 ,δ(m)≈-.25 ,δ1(m)≈ 0
M= 90 ,S(m)= 9 ( s1= 8 ,s2= 1 ), Sp(m)≈ 8 ,δ(m)≈-.111 ,δ1(m)≈ 0
M= 92 ,S(m)= 4 ( s1= 3 ,s2= 1 ), Sp(m)≈ 3 ,δ(m)≈-.25 ,δ1(m)≈ 0
M= 94 ,S(m)= 5 ( s1= 4 ,s2= 1 ), Sp(m)≈ 3 ,δ(m)≈-.4 ,δ1(m)≈-.25
M= 96 ,S(m)= 7 ( s1= 6 ,s2= 1 ), Sp(m)≈ 7 ,δ(m)≈ 0 ,δ1(m)≈ .167
M= 98 ,S(m)= 3 ( s1= 3 ,s2= 0 ), Sp(m)≈ 4 ,δ(m)≈ .333 ,δ1(m)≈ .333
M= 100 ,S(m)= 6 ( s1= 5 ,s2= 1 ), Sp(m)≈ 5 ,δ(m)≈-.167 ,δ1(m)≈ 0
而在5万附近区域,连乘式的积与全部素对数量,S(m)则更接近。
示例:
M= 55000 ,S(m)= 569 ( s1= 560 ,s2= 9 ), Sp(m)≈ 556 ,δ(m)≈-.023 ,δ1(m)≈-.007
M= 55002 ,S(m)= 751 ( s1= 740 ,s2= 11 ),Sp(m)≈ 766 ,δ(m)≈ .02 ,δ1(m)≈ .035
M= 55004 ,S(m)= 361 ( s1= 357 ,s2= 4 ), Sp(m)≈ 375 ,δ(m)≈ .039 ,δ1(m)≈ .05
M= 55006 ,S(m)= 466 ( s1= 458 ,s2= 8 ), Sp(m)≈ 450 ,δ(m)≈-.034 ,δ1(m)≈-.017
M= 55008 ,S(m)= 738 ( s1= 726 ,s2= 12 ),Sp(m)≈ 754 ,δ(m)≈ .022 ,δ1(m)≈ .039
M= 55010 ,S(m)= 499 ( s1= 492 ,s2= 7 ), Sp(m)≈ 500 ,δ(m)≈ .002 ,δ1(m)≈ .016
M= 55012 ,S(m)= 398 ( s1= 390 ,s2= 8 ), Sp(m)≈ 400 ,δ(m)≈ .005 ,δ1(m)≈ .026
M= 55014 ,S(m)= 760 ( s1= 749 ,s2= 11 ), Sp(m)≈ 769 ,δ(m)≈ .012 ,δ1(m)≈ .027
M= 55016 ,S(m)= 432 ( s1= 424 ,s2= 8 ), Sp(m)≈ 429 ,δ(m)≈-.007 ,δ1(m)≈ .012
M= 55018 ,S(m)= 380 ( s1= 374 ,s2= 6 ), Sp(m)≈ 375 ,δ(m)≈-.013 ,δ1(m)≈ .003
M= 55020 ,S(m)= 1213 ( s1= 1198 ,s2= 15 ), Sp(m)≈ 1210 ,δ(m)≈-.002 ,δ1(m)≈ .01
|
|