数学中国

用户名  找回密码
 注册
帖子
热搜: 活动 交友 discuz
收藏本版 (78) |订阅

基础数学 今日: 1 |主题: 32742|排名: 4 

版主: luyuanhong
作者 回复/查看 最后发表
预览 [原创]n维欧氏空间的向量运算 zhaolu48 2006-3-1 16:09 13709 wangyangkee 2010-6-4 06:18
预览 熟悉的扩张 白洞先生 2006-2-23 16:29 44589 wangyangkee 2010-6-4 05:46
预览 求助:毕业论文‘确定集合基数的几种方法’ pp7021375 2006-2-28 11:54 14508 wangyangkee 2010-6-4 05:40
预览 椭圆弧长、周长投影算法 attachment 空谷幽男 2006-2-28 01:10 14098 wangyangkee 2010-6-4 05:28
预览 样本统计量独立性的一个问题。 attachment fm1134 2010-6-3 11:33 33341 luyuanhong 2010-6-4 01:06
预览 快来看看!!!!!!!!!!!!!! master 2006-2-27 12:46 14568 wangyangkee 2010-6-3 23:44
预览 不要光说不练,来道代数题思考思考. kenck 2006-2-26 20:36 33875 wangyangkee 2010-6-3 23:42
预览 [原创]分形几何 aqianer 2006-2-26 19:54 14446 wangyangkee 2010-6-3 23:36
预览 "双生质数猜想"的最后关键问题 shenlei 2006-2-23 20:46 24933 熊一兵 2010-6-3 23:11
预览 arccos 是什么意思,,怎么计算它的值 (无内容) caopeiwei 2006-2-26 10:21 28730 wangyangkee 2010-6-3 17:57
预览 [求助] ldb010 2006-2-25 18:21 45109 wangyangkee 2010-6-3 17:54
预览 问题为何如此解出(1) zglfirst 2006-2-23 18:39 34475 wangyangkee 2010-6-3 16:52
预览 [原创] 同调论 有什么应用? (无内容) kzwang 2006-2-25 17:05 13579 wangyangkee 2010-6-3 13:26
预览 www.madio.net 临时备份: zhouj 2006-2-23 16:31 94223 wangyangkee 2010-6-3 13:07
预览 因式分解 attachment 电子恐龙 2006-2-16 20:51 96093 wangyangkee 2010-6-3 12:55
预览 [原创] 请高手介绍一下 Aubry-Mather theory kzwang 2006-2-25 17:02 13252 wangyangkee 2010-6-3 12:37
预览 2^n内素数讨论 attachment 林培慧 2006-2-22 09:46 65083 熊一兵 2010-6-3 10:44
预览 [求助] ljdqe456 2006-2-5 23:54 85918 wangyangkee 2010-6-3 07:32
预览 [求助]请教问题  ...2 如此 2006-2-13 11:51 107837 wangyangkee 2010-6-3 07:28
预览 求助!!! hailide4 2006-3-3 14:02 14116 wangyangkee 2010-6-3 06:33
下一页 »

快速发帖

还可输入 80 个字符
您需要登录后才可以发帖 登录 | 注册

本版积分规则

LaTEX濡澘瀚~宥嗘綇閹惧啿寮�闁靛棌鍋�闁轰焦鐟ч埢锟�闁靛棌鍋�缂佹绠戣ぐ鎸庢償閿燂拷闁靛棌鍋�闁告梻濮鹃、鎴﹀礃閸涱喚鍨肩紒娑虫嫹闁靛棌鍋�闁告梻濮鹃、鎴︽⒒鐎涙ḿ鍨肩紒娑虫嫹闁靛棌鍋�
閻庣數鎳撶花鏌ユ儍閿燂拷 LaTEX 闁轰礁鐗婇悘澶愭晬閿燂拷

Archiver|手机版|小黑屋|数学中国 ( 京ICP备05040119号 )

GMT+8, 2025-7-16 09:14 , Processed in 0.598233 second(s), 14 queries .

Powered by Discuz! X3.4

Copyright © 2001-2020, Tencent Cloud.

返回顶部 返回版块
\frac{\square}{\square}\sqrt{\square}\square_{\baguet}^{\baguet}\overarc{\square}\ \dot{\baguet}\left(\square\right)\binom{\square}{\square}\begin{cases}\square\\\square\end{cases}\ \begin{bmatrix}\square&\square\\\square&\square\end{bmatrix}\to\Rightarrow\mapsto\alpha\ \theta\ \pi\times\div\pm\because\angle\ \infty
\frac{\square}{\square}\sqrt{\square}\sqrt[\baguet]{\square}\square_{\baguet}\square^{\baguet}\square_{\baguet}^{\baguet}\sum_{\baguet}^{\baguet}\prod_{\baguet}^{\baguet}\coprod_{\baguet}^{\baguet}\int_{\baguet}^{\baguet}\lim_{\baguet}\lim_{\baguet}^{\baguet}\bigcup_{\baguet}^{\baguet}\bigcap_{\baguet}^{\baguet}\bigwedge_{\baguet}^{\baguet}\bigvee_{\baguet}^{\baguet}
\underline{\square}\overline{\square}\overrightarrow{\square}\overleftarrow{\square}\overleftrightarrow{\square}\underrightarrow{\square}\underleftarrow{\square}\underleftrightarrow{\square}\dot{\baguet}\hat{\baguet}\vec{\baguet}\tilde{\baguet}
\left(\square\right)\left[\square\right]\left\{\square\right\}\left|\square\right|\left\langle\square\right\rangle\left\lVert\square\right\rVert\left\lfloor\square\right\rfloor\left\lceil\square\right\rceil\binom{\square}{\square}\boxed{\square}
\begin{cases}\square\\\square\end{cases}\begin{matrix}\square&\square\\\square&\square\end{matrix}\begin{pmatrix}\square&\square\\\square&\square\end{pmatrix}\begin{bmatrix}\square&\square\\\square&\square\end{bmatrix}\begin{Bmatrix}\square&\square\\\square&\square\end{Bmatrix}\begin{vmatrix}\square&\square\\\square&\square\end{vmatrix}\begin{Vmatrix}\square&\square\\\square&\square\end{Vmatrix}\begin{array}{l|l}\square&\square\\\hline\square&\square\end{array}
\to\gets\leftrightarrow\nearrow\searrow\downarrow\uparrow\updownarrow\swarrow\nwarrow\Leftarrow\Rightarrow\Leftrightarrow\rightharpoonup\rightharpoondown\impliedby\implies\Longleftrightarrow\leftharpoonup\leftharpoondown\longleftarrow\longrightarrow\longleftrightarrow\Uparrow\Downarrow\Updownarrow\hookleftarrow\hookrightarrow\mapsto
\alpha\beta\gamma\Gamma\delta\Delta\epsilon\varepsilon\zeta\eta\theta\Theta\iota\kappa\varkappa\lambda\Lambda\mu\nu\xi\Xi\pi\Pi\varpi\rho\varrho\sigma\Sigma\tau\upsilon\Upsilon\phi\Phi\varphi\chi\psi\Psi\omega\Omega\digamma\vartheta\varsigma\mathbb{C}\mathbb{H}\mathbb{N}\mathbb{P}\mathbb{Q}\mathbb{R}\mathbb{Z}\Re\Im\aleph\partial\nabla
\times\cdot\ast\div\pm\mp\circ\backslash\oplus\ominus\otimes\odot\bullet\varnothing\neq\equiv\not\equiv\sim\approx\simeq\cong\geq\leq\ll\gg\succ\prec\in\ni\cup\cap\subset\supset\not\subset\not\supset\notin\not\ni\subseteq\supseteq\nsubseteq\nsupseteq\sqsubset\sqsupset\sqsubseteq\sqsupseteq\sqcap\sqcup\wedge\vee\neg\forall\exists\nexists\uplus\bigsqcup\bigodot\bigotimes\bigoplus\biguplus\bigcap\bigcup\bigvee\bigwedge
\because\therefore\angle\parallel\perp\top\nparallel\measuredangle\sphericalangle\diamond\diamondsuit\doteq\propto\infty\bowtie\square\smile\frown\bigtriangledown\triangle\triangleleft\triangleright\bigcirc \wr\amalg\models\preceq\mid\nmid\vdash\dashv\nless\ngtr\ldots\cdots\vdots\ddots\surd\ell\flat\sharp\natural\wp\clubsuit\heartsuit\spadesuit\oint\lfloor\rfloor\lceil\rceil\lbrace\rbrace\lbrack\rbrack\vert\hbar\aleph\dagger\ddagger

MathQuill杈撳叆:

Latex浠g爜杈撳叆:銆€

銆€