|
|
a(1)=1 ,√a(n)=√a(n+1)+√a(n)a(n+1) ,求 a(n) 及一个级数的和
除以sqrt(a(n)a(n+1)),则1/sqrt(a(n))=1+(n-1)*1=n,即a(n)=1/n^2.
(2):(k(k+1)(k+2)(k+4))/[k^2(k+1)^2(k+2)^2]=(k+4)/k(k+1)(k+2)=1/(k+1)(k+2)+4/k(k+1)(k+2)=[1/k+1-1/k+2]+2[1/k(k+1)-1/(k+1)(k+2)]
所以最后和为
n(3n+7)/2(n+1)(n+2) |
|