数学中国

用户名  找回密码
 注册
帖子
热搜: 活动 交友 discuz
查看: 5159|回复: 1

聚焦七大数学“世纪难题”

[复制链接]
发表于 2006-10-26 09:03 | 显示全部楼层 |阅读模式
聚焦七大数学“世纪难题”  


      

  
  
  
【来源:深圳新闻网-晶报】  
  聚焦七大数学“世纪难题”
  期待文学“证明”《庞加莱猜想》
  编者按
  随着“比攻克哥德巴赫猜想更重要”的庞加莱猜想被中大教授朱熹平、旅美数学家曹怀东彻底证明,人们不仅联想到最接近哥德巴赫猜想的数学家陈景润,同时也联想起了报告文学《哥德巴赫猜想》。

  

深圳文学界一些人士期待,会有报告文学《庞加莱猜想》的诞生。
  1978年,中国作家协会主办的《人民文学》第一期,刊发了著名作家徐迟创作的报告文学《哥德巴赫猜想》。那时,人们没有想到,这部报告文学成为新时期报告文学繁荣的报春花。不但如此,一个烙印在人们心中的科学家形象也永存人心,被历史记载。
  《庞加莱猜想》,会被当下文学界用报告文学“证明”吗?在没有答案之前,我们来关注七大数学“世纪难题”。
  2000年5月,美国的克莱数学研究所筛选出了七大数学“世纪难题”,并为每道题悬赏百万美元求解。这些题目包括庞加莱猜想、黎曼假设、霍奇猜想、杨-米尔理论、P与NP问题、波奇和斯温纳顿-戴雅猜想、纳威厄-斯托克斯方程。
  在“克莱数学研究所”宣布为七大难题悬赏举行的新闻发布会上,著名数学家怀尔斯教授就以一个过来人的姿态表示,希望通过将解决数学难题与奖金挂钩,能“对未来几代数学家形成激励和鼓舞”。怀尔斯1995年因证明悬而未决350年的“费尔马大定理”而名震一时,他自己对兴趣在一个数学家成长过程中的作用深有体会。怀尔斯回忆说,他10岁时在一本连环画上首次知道了什么是“费尔马大定理”,这成为他不懈求索的起点。
  克莱数学研究所挥金如土的另一个原因,是因为此次悬赏求解的七大难题是20世纪中没被数学家啃下来的最硬的几块“骨头”。过去100年中,地球上最优秀的大脑面对它们都无计可施。而这几道难题的破解,据认为极有可能为加密学等研究带来革命。例如,有关专家指出,七大难题中最有名的“黎曼假设”一旦被攻克,将有助于研制出提高互联网上信息传输安全性的新手段,用户的信用卡账号信息、医疗和金融资料等将得到更有效保障。而其余的六大难题,据认为破解后也有可能会给航天等领域带来突破性进展,并开辟匪夷所思的全新数学研究领域。
  如今,七大难题之一庞加莱猜想被中国科学家完全破解。那么其他几大难题呢?
  在哈佛大学教授、著名数学家、菲尔兹奖得主丘成桐眼中,庞加莱猜想和黎曼假设是两个最大的猜想。他一一分析指出,剩下的六大难题中,很多人攻关的黎曼假设还没有看到破解的希望;引起很多著名数学家兴趣的霍奇猜想“进展不大”;和流体有关的纳威厄-斯托克斯方程“离解决也相差很远”;P与NP问题“没什么进展”;杨-米尔理论“太难,几乎没人做”。
  丘成桐认为,和数论有关的“波奇和斯温纳顿-戴雅猜想”是最有希望破解的一个,“国际上很多人在做这个猜想。国内做的人不多,顶多两三个。”他透露,在这一领域,原本在国外取得一些进展的数论专家田野教授,最近已经回国到晨兴数学研究中心工作。“他做得不错,希望他能回来带动一下国内在这方面的工作。”(新综)
  七大数学“世纪难题”提出者
  “世纪难题”之一:P(多项式算法)与NP(非多项式算法)问题
  在一个周六的晚上,你参加了一个盛大的晚会。由于感到局促不安,你想知道这一大厅中是否有你已经认识的人。你的主人向你提议说,你一定认识那位正在甜点盘附近角落的女士罗丝。不费一秒钟,你就能向那里扫视,并且发现你的主人是正确的。然而,如果没有这样的暗示,你就必须环顾整个大厅,一个个地审视每一个人,看是否有你认识的人。生成问题的一个解通常比验证一个给定的解时间花费要多得多。这是这种一般现象的一个例子。
  与此类似的是,如果某人告诉你,13717421这个数可以写成两个较小的数的乘积,你可能不知道是否应该相信他,但是如果他告诉你它可以因子分解为3607乘上3803,那么你就可以用一个袖珍计算器容易验证这是对的。不管我们编写程序是否灵巧,判定一个答案是可以很快利用内部知识来验证,还是没有这样的提示而需要花费大量时间来求解,被看做逻辑和计算机科学中最突出的问题之一。它是美国科学家斯蒂文·考克于1971年陈述的。
  “世纪难题”之二:霍奇猜想
  由苏格兰数学家W·霍奇在1950年提出。基本想法是问在怎样的程度上,我们可以把给定对象的形状通过把维数不断增加的简单几何营造块粘合在一起来形成。这种技巧是变得如此有用,使得它可以用许多不同的方式来推广;最终导致一些强有力的工具,使数学家在对他们研究中所遇到的形形色色的对象进行分类时取得巨大的进展。不幸的是,在这一推广中,程序的几何出发点变得模糊起来。在某种意义下,必须加上某些没有任何几何解释的部件。霍奇猜想断言,对于所谓射影代数簇这种特别完美的空间类型来说,称作霍奇闭链的部件实际上是称作代数闭链的几何部件的(有理线性)组合。
  “世纪难题”之三:庞加莱猜想
  如果我们伸缩围绕一个苹果表面的橡皮带,那么我们可以既不扯断它,也不让它离开表面,使它慢慢移动收缩为一个点。另一方面,如果我们想象同样的橡皮带以适当的方向被伸缩在一个轮胎面上,那么不扯断橡皮带或者轮胎面,是没有办法把它收缩到一点的。我们说,苹果表面是“单连通的”,而轮胎面不是。大约在100年以前,法国数学家庞加莱已经知道,二维球面本质上可由单连通性来刻画,他提出三维球面(四维空间中与原点有单位距离的点的全体)的对应问题。这个问题立即变得无比困难,从那时起,数学家们就在为此奋斗。
  “世纪难题”之四:黎曼假设
  有些数具有不能表示为两个更小的数的乘积的特殊性质,例如,2、3、5、7,等等。这样的数称为素数;它们在纯数学及其应用中都起着重要作用。在所有自然数中,这种素数的分布并不遵循任何有规则的模式;然而,19世纪德国数学家黎曼观察到,素数的频率紧密相关于一个精心构造的所谓黎曼蔡塔函数z(s)的性态。著名的黎曼假设断言,方程z(s)=0的所有有意义的解都在一条直线上。这点已经对于开始的1,500,000,000个解验证过。证明它对于每一个有意义的解都成立将为围绕素数分布的许多奥秘带来光明。
  “世纪难题”之五:杨-米尔理论
  量子物理的定律是以经典力学的牛顿定律对宏观世界的方式对基本粒子世界成立的。大约半个世纪以前,杨振宁和米尔发现,量子物理揭示了在基本粒子物理与几何对象的数学之间的令人注目的关系。基于杨-米尔方程的预言已经在如下的全世界范围内的实验室中所履行的高能实验中得到证实:布罗克哈文、斯坦福、欧洲粒子物理研究所和筑波。尽管如此,他们的既描述重粒子、又在数学上严格的方程没有已知的解。特别是,被大多数物理学家所确认、并且在他们的对于“夸克”的不可见性的解释中应用的“质量缺口”假设,从来没有得到一个数学上令人满意的证实。在这一问题上的进展需要在物理上和数学上两方面引进根本上的新观念。
  “世纪难题”之六:纳威厄-斯托克斯方程
  起伏的波浪跟随着我们正在湖中蜿蜒穿梭的小船,湍急的气流跟随着现代喷气式飞机的飞行。数学家和物理学家深信,无论是微风还是湍流,都可以通过理解纳威厄-斯托克斯方程的解,来对它们进行解释和预言。虽然这些方程是19世纪写下的,我们对它们的理解仍然极少。挑战在于对数学理论作出实质性的进展,使我们能解开隐藏在纳威厄-斯托克斯方程中的奥秘。
  “世纪难题”之七:波奇和斯温纳顿-戴雅猜想
  数学家总是被诸如x2+y2=z2那样的代数方程的所有整数解的刻画问题着迷。欧几里德曾经对这一方程给出完全的解答,但是对于更为复杂的方程,这就变得极为困难。事实上,正如马蒂雅谢维奇指出,希尔伯特第十问题是不可解的,即,不存在一般的方法来确定这样的方法是否有一个整数解。当解是一个阿贝尔簇的点时,波奇和斯温纳顿-戴雅猜想认为,有理点的群的大小与一个有关的蔡塔函数z(s)在点s=1附近的性态。特别是,这个有趣的猜想认为,如果z(1)等于0,那么存在无限多个有理点(解),相反,如果z(1)不等于0,那么只存在有限多个这样的点。(科文)


发表于 2010-6-12 07:23 | 显示全部楼层

聚焦七大数学“世纪难题”

蠢货俞根强的早期牌坊  

ygqkarl  
门派: 公理化的中国道家

自信、自强、自明、……,民族才会昌盛!(公理化的中国道家) 这里特别强调一下“自明”,解释是“知人者智、自知者明”的“明”。
您需要登录后才可以回帖 登录 | 注册

本版积分规则

LaTEX预览输入 教程 符号库 加行内标签 加行间标签 
对应的 LaTEX 效果:

Archiver|手机版|小黑屋|数学中国 ( 京ICP备05040119号 )

GMT+8, 2025-7-5 03:20 , Processed in 0.081008 second(s), 16 queries .

Powered by Discuz! X3.4

Copyright © 2001-2020, Tencent Cloud.

快速回复 返回顶部 返回列表
\frac{\square}{\square}\sqrt{\square}\square_{\baguet}^{\baguet}\overarc{\square}\ \dot{\baguet}\left(\square\right)\binom{\square}{\square}\begin{cases}\square\\\square\end{cases}\ \begin{bmatrix}\square&\square\\\square&\square\end{bmatrix}\to\Rightarrow\mapsto\alpha\ \theta\ \pi\times\div\pm\because\angle\ \infty
\frac{\square}{\square}\sqrt{\square}\sqrt[\baguet]{\square}\square_{\baguet}\square^{\baguet}\square_{\baguet}^{\baguet}\sum_{\baguet}^{\baguet}\prod_{\baguet}^{\baguet}\coprod_{\baguet}^{\baguet}\int_{\baguet}^{\baguet}\lim_{\baguet}\lim_{\baguet}^{\baguet}\bigcup_{\baguet}^{\baguet}\bigcap_{\baguet}^{\baguet}\bigwedge_{\baguet}^{\baguet}\bigvee_{\baguet}^{\baguet}
\underline{\square}\overline{\square}\overrightarrow{\square}\overleftarrow{\square}\overleftrightarrow{\square}\underrightarrow{\square}\underleftarrow{\square}\underleftrightarrow{\square}\dot{\baguet}\hat{\baguet}\vec{\baguet}\tilde{\baguet}
\left(\square\right)\left[\square\right]\left\{\square\right\}\left|\square\right|\left\langle\square\right\rangle\left\lVert\square\right\rVert\left\lfloor\square\right\rfloor\left\lceil\square\right\rceil\binom{\square}{\square}\boxed{\square}
\begin{cases}\square\\\square\end{cases}\begin{matrix}\square&\square\\\square&\square\end{matrix}\begin{pmatrix}\square&\square\\\square&\square\end{pmatrix}\begin{bmatrix}\square&\square\\\square&\square\end{bmatrix}\begin{Bmatrix}\square&\square\\\square&\square\end{Bmatrix}\begin{vmatrix}\square&\square\\\square&\square\end{vmatrix}\begin{Vmatrix}\square&\square\\\square&\square\end{Vmatrix}\begin{array}{l|l}\square&\square\\\hline\square&\square\end{array}
\to\gets\leftrightarrow\nearrow\searrow\downarrow\uparrow\updownarrow\swarrow\nwarrow\Leftarrow\Rightarrow\Leftrightarrow\rightharpoonup\rightharpoondown\impliedby\implies\Longleftrightarrow\leftharpoonup\leftharpoondown\longleftarrow\longrightarrow\longleftrightarrow\Uparrow\Downarrow\Updownarrow\hookleftarrow\hookrightarrow\mapsto
\alpha\beta\gamma\Gamma\delta\Delta\epsilon\varepsilon\zeta\eta\theta\Theta\iota\kappa\varkappa\lambda\Lambda\mu\nu\xi\Xi\pi\Pi\varpi\rho\varrho\sigma\Sigma\tau\upsilon\Upsilon\phi\Phi\varphi\chi\psi\Psi\omega\Omega\digamma\vartheta\varsigma\mathbb{C}\mathbb{H}\mathbb{N}\mathbb{P}\mathbb{Q}\mathbb{R}\mathbb{Z}\Re\Im\aleph\partial\nabla
\times\cdot\ast\div\pm\mp\circ\backslash\oplus\ominus\otimes\odot\bullet\varnothing\neq\equiv\not\equiv\sim\approx\simeq\cong\geq\leq\ll\gg\succ\prec\in\ni\cup\cap\subset\supset\not\subset\not\supset\notin\not\ni\subseteq\supseteq\nsubseteq\nsupseteq\sqsubset\sqsupset\sqsubseteq\sqsupseteq\sqcap\sqcup\wedge\vee\neg\forall\exists\nexists\uplus\bigsqcup\bigodot\bigotimes\bigoplus\biguplus\bigcap\bigcup\bigvee\bigwedge
\because\therefore\angle\parallel\perp\top\nparallel\measuredangle\sphericalangle\diamond\diamondsuit\doteq\propto\infty\bowtie\square\smile\frown\bigtriangledown\triangle\triangleleft\triangleright\bigcirc \wr\amalg\models\preceq\mid\nmid\vdash\dashv\nless\ngtr\ldots\cdots\vdots\ddots\surd\ell\flat\sharp\natural\wp\clubsuit\heartsuit\spadesuit\oint\lfloor\rfloor\lceil\rceil\lbrace\rbrace\lbrack\rbrack\vert\hbar\aleph\dagger\ddagger

MathQuill输入:

Latex代码输入: