|
[这个贴子最后由小草在 2007/01/26 11:13am 第 4 次编辑]
哥德巴哈猜想研究之十二
定理十二孪生素数定理(3)
我们从孪生素数模剩余中得知,m趋于无限s趋于1。
当m=210时c(w1)=1.383139968
c(wt)=0.698709191
当m=2310时c(w1)=1.455275380
c(wt)=0.532460568
m愈大c(w1)愈大,c(wt)愈小。
我们有孪生素数H(x)
H(10^1)=2
H(10^2)=8
H(10^3)=35
H(10^4)=205
H(10^5)=1224
H(10^6)=8169
H(10^7)=58981
H(10^8)=440313
H(10^9)=3424507
H(10^10)=27412680
H(10^11)=224376049
H(10^12)=1870585220
H(10^13)=15834664872
H(10^14)=135780321665
H(10^15)=1177209242304
我们有
s(10^1)=0.301029995
s(10^2)=0.451544993
s(10^3)=0.514689348
s(10^4)=0.577938465
s(10^5)=0.617556283
s(10^6)=0.652028149
s(10^7)=0.681530304
s(10^8)=0.705470188
s(10^9)=0.726066450
s(10^10)=0.743795149
s(10^11)=0.759179681
s(10^12)=0.772664791
s(10^13)=0.784585298
s(10^14)=0.795202631
s(10^15)=0.804723578
c(10^1)=0.971111983
c(10^2)=0.767731433
c(10^3)=0.773800550
c(10^4)=0.758311058
c(10^5)=0.785097506
c(10^6)=0.800845266
c(10^7)=0.807849025
c(10^8)=0.818113521
c(10^9)=0.824598941
c(10^10)=0.829485050
c(10^11)=0.833495727
c(10^12)=0.836785827
c(10^13)=0.839530582
c(10^14)=0.841856092
c(10^15)=0.843851877
c(10^1)-s(10^1)=0.670081988
c(10^2)-s(10^2)=0.316186440
c(10^3)-s(10^3)=0.259111202
c(10^4)-s(10^4)=0.180372593
c(10^5)-s(10^5)=0.167541223
c(10^6)-s(10^6)=0.148817117
c(10^7)-s(10^7)=0.126318721
c(10^8)-s(10^8)=0.112643333
c(10^9)-s(10^9)=0.098532491
c(10^10)-s(10^10)=0.085689901
c(10^11)-s(10^11)=0.074316046
c(10^12)-s(10^12)=0.064121036
c(10^13)-s(10^13)=0.054945284
c(10^14)-s(10^14)=0.046653461
c(10^15)-s(10^15)=0.039128299
以上可知x趋于无限c(x)-s(x)趋于0,即c(x)趋于s(x),s(x)趋于1故c(x)趋于1。
我们得到
H(x)
limH(x)=-------------=1 (33)
x→∞ x/(lnx)^2
必有H(x)=c^n/(b1+b2+b3+,...,+bn)^2,使bn是一个常数。命c=10,则bn=ln10.
这样lnx与log(a)x之间就会有一个差。
x
命H(x)=----------------- (34)
x→∞ (lnx-r(x))^2
这个公式将随着r(x)趋于常数而趋于正确。
我们有
lnlnx r(10^n)/lnln10^n
r(10^1)=0.066517114 0.834032445 0.079753628
r(10^2)=1.069636280 1.527179626 0.700399783
r(10^3)=1.562530441 1.932644734 0.808493363
r(10^4)=2.226037414 2.220326806 1.002571967
r(10^5)=2.474156389 2.443470358 1.012558381
r(10^6)=2.751424328 2.625791914 1.047845533
r(10^7)=3.097107781 2.779942594 1.114090553
r(10^8)=3.350472764 2.913473987 1.149992339
r(10^9)=3.634882777 3.031257023 1.199133808
r(10^10)=3.926251820 3.136617538 1.251747072
r(10^11)=4.217292813 3.231927718 1.304884633
r(10^12)=4.509774246 3.318939095 1.358799941
r(10^13)=4.803428379 3.398981803 1.413196262
r(10^14)=5.097957272 3.473089775 1.467844946
r(10^15)=5.393165105 3.542082646 1.522597196
命r(x)/lnlnx=h(x)
我们有
(1.467844946)lnlnx列表如下:
10^1=1.224230309
10^2=2.241662896
10^3=2.836822805
10^4=3.259095296
10^5=3.586635616
10^6=3.854255390
10^7=4.080524687
10^8=4.276528067
10^9=4.449415301
10^10=4.604068201
10^11=4.743968767
10^12=4.871687977
10^13=4.989178261
10^14=5.097957272
10^15=5.199228110
x
命F(x)=--------------------------- (35)
{lnx-(1.467844946)lnlnx}^2
我们有
F(x)/H(x)
F(10^1)=8.599568522 4.299784261
F(10^2)=17.90136335 2.237670419
F(10^3)=60.34095824 1.724027378
F(10^4)=282.3477490 1.377306093
F(10^5)=1591.695912 1.300405157
F(10^6)=10077.94235 1.233681277
F(10^7)=69011.62905 1.170065429
F(10^8)=499857.4034 1.135231990
F(10^9)=3775890.175 1.102608397
F(10^10)=29467051.92 1.074942396
F(10^11)=236004746.2 1.051826820
F(10^12)=1930549468 1.032056411
F(10^13)=16071370110.671 1.014948547
F(10^14)=135780321665 1
F(10^15)=11161697764852.7 0.986823517
作者施承忠
|
|