1971 年 12 月,在伯克利召开的一个动力系统研讨班结束的时候,貌似解决了一个能很好地应用于动力系统的平面上的棘手问题。解决方案宣称:能把 N 个两两位置不同的点逐步移动到另外的 N 个点,使得在移动过程中不发生自交,并且每一步都整体只移动非常小的距离。坐在前排的资深动力系统专家们都乐观地相信这个结果,因为根据之前的经验,在三维以及更高维数的动力系统的应用中,由于这些点能摆成一般位置,这个结论显然是对的,如今该定理在二维的情形也应该成立。
一个坐在教室最后排的长头发、大胡子的研究生站了起来,说证明中的算法是不成立的。他就是 Bill Thurston。他怯怯地走到黑板前面,画了两幅图,每幅图都有 7 个点。然后开始按照刚才的算法来操作。一开始出现的连线尽管很短很少,但毕竟挡住了另外一部分线的延伸方向。想把另外一部分线继续延长又同时避免出现交叉的话,必须从别的地方绕回来,于是各条线开始变得越来越长。在这个复杂的图示例子里,刚才的算法无效!我从未见过其他人有如此强的理解力,也从来没见过有人能如此之快就创造性地构造出反例。这让我从此对几何上可能出现的复杂性产生敬畏。
这幅 2 米高、4 米宽、画着曲线的壁画(见2003年《美国数学会通讯》第50卷第3期的封面)署有作者和日期:“DPS and BT, December, 1971”,它在伯克利的墙上保留了40多年,直到几年前才被擦去。
过去在伯克利 Evans Hall 里由 Thurston 和 Sullivan 一起画的壁画。这个围着三个点绕来绕去的复杂图像实际上是一条简单闭曲线。| 摄影:Ken Ribet
故事三
上面两个故事在伯克利发生的那个星期,其实我只是从麻省理工学院访问伯克利,讲一系列关于微分形式和流形同伦论的课。那时候叶状结构与微分形式到处出现,并且成为研究的热潮,我想利用在我的研究中出现的1-形式来描述基本群的中心下降序列,进而构造叶状结构。这些叶状结构的叶子覆盖了从流形到它的幂零流形的映射图像。幂零流形就是从基本群的高阶幂零子群出发构造的流形。这其实是把利用同调来构造的到高维环面的 Abel 映射推广成幂零的情形。由于缺少 Lie 群的知识,我曾向麻省理工学院和哈佛大学的微分几何学家们请教这个推广的可能性,但我自己还是没弄明白。这些都太模糊、太代数化了。
就在以上两个故事发生期间,我向我的老朋友 Moe Hirsch 提起了 Bill Thurston。Thurston 是 Moe 的博士生,那时候正处于博士阶段的第五年。我记得是 Moe 还是谁说过,Bill 开始念博士时进展很缓慢,甚至在口试时出了点小问题。当时 Bill 被要求举一个万有覆盖的例子,他选择了画亏格为2 的曲面的万有覆盖,在黑板上画出一些笨拙的八边形,八个八边形共用一个顶点。
亏格 2 曲面的万有覆盖。
这种论证很快就在黑板上越来越呈现为没有说服力的混乱。我想 Bill 是第一个在考场上想出如此非平凡的万有覆盖的人。Moe 说,不久之后,Bill 便开始以每个月一个的速度解决博士论文级别的大问题。许多年之后,我听说就在那段时间里, Bill 刚好有了他的第一个孩子 Nathaniel。孩子在晚上不睡觉,所以 Bill 也没法睡觉。在念研究生的时候,有一整年的时间,他晚上都只能与 Nathaniel 在地板上来回地走。
我安排 Bill 先去普林斯顿高等研究院(IAS),然后来麻省理工学院做一场报告,并计划把他招到麻省理工学院。但最后的结果是,Bill 在 1973-1974 年来麻省理工学院访问了一年,但那一年我正好去访问法国高等科学研究院(IHES),并且在法国一待就是 20 年。而 Bill 则被邀请回到普林斯顿大学任职。
故事四
林斯顿高等研究院,1972-1973
在 1972-1973 这段时间,我从麻省理工学院访问普林斯顿,于是与 Bill 接触的机会更多了。一天,我们从普林斯顿高等研究院出来准备去吃午饭。我问 Bill,什么是极限圆(horocycle)。他说:“你们待在这儿别动。”然后他开始向学院的草地走去。走了一段距离,他停住并转过身来,说:“你们在以我为圆心的圆周上。”然后他转身走得更远,再次转过身来说了一些东西。由于距离远,他说什么我已经听不清楚了。他每走到一个新的地方就再喊一次,我们终于知道他说的是同样的意思:“你们在以我为圆心的圆周上。”接下来他走得更远了。由于距离太远,他喊什么我都听不见了。等他转过身来使劲喊大概同样意思的时候,我忽然知道了什么是极限圆。
极限圆
Atiyah 问我们其中某些拓扑学家:平坦向量丛是否存在分类空间?他曾对这样的丛构造出一些新的示性类。由 Brown 定理,我们知道这东西存在,但是还不知道如何具体地构造出来。第二天,Atiyah 说,当他问 Thurston 这个问题的时候,Thurston 给出了一个神奇的构造:把作为向量丛结构群的李群看成一个抽象群,赋予离散拓扑,然后就给出分类空间。
后来,我听说 Thurston 通过画图证明给 Jack Milnor 看:任意单峰映射的动力系统模式都会出现在取适当值c时对应的二次函数 x → x^2+c 的迭代中。我因为正在学习动力系统,所以就计划花一个学期的时间在普林斯顿,向 Bill 学习这篇从刚才提到的画图而发展出来的关于 Milnor-Thurston 万有性的著名论文。
Bill 和我每天重复这样的事情,配合得很完美。每天加州时间早上 8 点的时候,我准备好我的两场报告内容,做好一切提问的应对。当陈述 Bill 那些绝妙地控制住测地线长度的技术时,演讲推向高潮!这些测地线是分支皱褶曲面在分支处的曲线。要估计它们的长度,利用的却是内蕴曲面上测地流产生的动力系统的熵。这个熵又与分支曲面万有覆盖的面积增长率有关。但在负曲率的空间中,这个面积的增长速度却又被双曲球体的体积增长率所控制。证毕!不但如此,Thurston 还构造出一个漂亮的例子,表明估计的界是精确的。对于听众之一的 Harold Rosenberg(他是来自巴黎的精明的朋友)来说,这次报告的水平是超乎想象的。报告结束之后,他沮丧地问我:“Dennis,你是不是一直把 Thurston 锁在你办公室的楼上呀?”