|
定积分定义改革的应用实例
例一,根据 笔者的 定积分定义 与曲边梯形面积的 计算方法, 计算圆面积, 首先 需要写出 y=√r^2-x^2 的函数表达式,然后 查不定积分表 给出的原函数表达式,加上积分的变量x的下限为-r, 上限为r, 算出原函数增量,,这个增量为 半圆面积 1/2π^2..
例二,对于球体积,先设:球体体积为函数V(x)在-r到r 的增量,然后计算V(x)的导数或微分, 其导数为dV/dx=π(r^2-x^2), 微分为dV =π(r^2-x^2) dx, 由于对称,可以计算0到r 积分后 乘2,得球体积为V=4/3×πr^3。
例三,球体体积与表面积的导数关系, 将球体体积V=4/3×πr^3,看作r的函数, 求导数得,V’=4×πr^2; 所以球体表面积可以看作球体体积函数的导函数。
例四(球体表面积的一个定积分算法),先设:球体表面积为函数S(x)在-r到r 的增量, 然后计算函数S(x) 的微分或导数, 根据微分ds是增量Δs 的准确到高阶无穷小的事实,可以取足够小区间[x,x+dx] , S(x)= S(x, l(x)),式中l(x)代表沿x方向截得的圆周的的圆弧长;根据弧微分公式 dl=r/√(r^2 -x^2)× dx, 于是得到 dS=2π√(r^2 -x^2)×dl =2πr×dx, 这就说明:S(x)的导数为2πr, 这是个常数,于是得 S(x)=2πr ×x, 这个函数在在-r到r 的增量为4πr^2(在立体几何中这个表面积是用极限方法计算的)。
|
|