数学中国

 找回密码
 注册
搜索
热搜: 活动 交友 discuz
123
返回列表 发新帖
楼主: 柳林

奇妙的连续的三生素数

[复制链接]
发表于 2020-9-5 20:52 | 显示全部楼层
不知你的理论值如何获得?
回复 支持 反对

使用道具 举报

发表于 2020-9-5 22:19 | 显示全部楼层
从实践来,到实践中去。再从实践来,再到实践中去。

点评

实话实说  发表于 2020-9-6 14:39
回复 支持 反对

使用道具 举报

 楼主| 发表于 2020-9-6 13:49 | 显示全部楼层
答白新岭网友:

理论值是由区间与密度的乘积得到的。由于和接三生素数非常少,最小区间只能选择1000万。密度只能选择百万分比。

具体到密度,计算过程很复杂,不可能简单描述。
回复 支持 反对

使用道具 举报

发表于 2020-9-8 15:28 | 显示全部楼层
祖冲之父子研究圆周率,密密麻麻摆棒子,从卧室摆到客厅,又从客厅摆到坝子。
回复 支持 反对

使用道具 举报

发表于 2020-9-8 15:28 | 显示全部楼层
祖冲之父子研究圆周率,密密麻麻摆棒子,从卧室摆到客厅,又从客厅摆到坝子。
回复 支持 反对

使用道具 举报

发表于 2022-6-8 20:42 | 显示全部楼层
同邻距的三生素数
且前一组三生素数之和是后一组三生素数的首项,

最小解:p=7,  ( p, p+30, p+100 ) 与 ( 3p+130, 3p+160, 3p+230 )

最小解:p=11,( p, p+20, p+120 ) 与 ( 3p+140, 3p+160, 3p+260 )

最小解:p=13,( p, p+10, p+30 ) 与 ( 3p+40, 3p+50, 3p+70 )

最小解:p=17,( p, p+150, p+560 ) 与 ( 3p+710, 3p+860, 3p+1270 )

最小解:p=19,( p, p+40, p+180 ) 与 ( 3p+220, 3p+260, 3p+400 )

最小解:p=23,(  p, p+20, p+90 ) 与 ( 3p+110, 3p+130, 3p+200 )

最小解:p=23,(  p, p+30, p+260 ) 与 ( 3p+290, 3p+320, 3p+550 )

最小解:p=29,( p, p+30, p+80 ) 与 ( 3p+110, 3p+140, 3p+190 )

最小解:p=29,( p, p+30, p+110 ) 与 ( 3p+140, 3p+170, 3p+250 )

最小解:p=29,( p, p+30, p+740 ) 与 ( 3p+770, 3p+800, 3p+1510 )

最小解:p=31,( p, p+30, p+160 ) 与 ( 3p+190, 3p+220, 3p+350 )

最小解:p=31,( p, p+30, p+490 ) 与 ( 3p+520, 3p+550, 3p+1010 )

最小解:p=37,( p, p+30, p+520 ) 与 ( 3p+550, 3p+580, 3p+1070 )

最小解:p=37,( p, p+30, p+1150 ) 与 ( 3p+1180, 3p+1210, 3p+2330 )

最小解:p=41,( p, p+20, p+150 ) 与 ( 3p+170, 3p+190, 3p+320 )

最小解:p=43,( p, p+30, p+250 ) 与 ( 3p+280, 3p+310, 3p+530 )

最小解:p=47,( p, p+80, p+270 ) 与 ( 3p+350, 3p+430, 3p+620 )

最小解:p=53,( p, p+30, p+620 ) 与 ( 3p+650, 3p+680, 3p+1270 )

最小解:p=59,( p, p+30, p+350 ) 与 ( 3p+380, 3p+410, 3p+730 )

最小解:p=61,( p, p+40, p+600 ) 与 ( 3p+640, 3p+680, 3p+1240 )

最小解:p=67,( p, p+30, p+400 ) 与 ( 3p+430, 3p+460, 3p+830 )

最小解:p=71,( p, p+30, p+920 ) 与 ( 3p+950, 3p+980, 3p+1870 )

最小解:p=73,( p, p+30, p+1420 ) 与 ( 3p+1450, 3p+1480, 3p+2870 )

最小解:p=79,( p, p+30, p+280 ) 与 ( 3p+310, 3p+340, 3p+590 )

最小解:p=83,( p, p+30, p+290 ) 与 ( 3p+320, 3p+350, 3p+610 )

最小解:p=89,( p, p+60, p+2450 ) 与 ( 3p+2510, 3p+2570, 3p+4960 )

最小解:p=97,( p, p+60, p+880 ) 与 ( 3p+940, 3p+1000, 3p+1820 )

这种 同邻距的三生素数 有 无限多组 !!!


稀有的三连同邻距的三生素数

且前一组三生素数之和是后一组三生素数的首项,

(222337, 222367, 222437) 与 (667141, 667171, 667241) 及 (2001553, 2001583, 2001653)

(5021, 5171, 5581) 与 (15773, 15923, 16333) 及 (48029, 48029, 48179, 48589)

猜想:罕见的四连同邻距的三生素数 存在 !!!!


回复 支持 反对

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

Archiver|手机版|小黑屋|数学中国 ( 京ICP备05040119号 )

GMT+8, 2025-7-4 21:48 , Processed in 0.078824 second(s), 15 queries .

Powered by Discuz! X3.4

Copyright © 2001-2020, Tencent Cloud.

快速回复 返回顶部 返回列表