|
首先讨论非完全平方数的平方根的一般理论.
设\small\,(n\in\mathbb{N}^+)\wedge(\sqrt{n}\not\in\mathbb{N}),\;F(n)=\{(m,k)\in\mathbb{Z}\times\mathbb{N}:\,k\mid n-m^2\in(0,n)\}
令\,{\small\lambda(m,k)=}\lfloor\frac{\sqrt{n}+m}{k}\rfloor,\;m_1=k\cdot\lambda(m,k)-m,\,k_1=\large\frac{n-m_1^2}{k}.\;则有
{\small\sqrt{n}-m_1=}\big(\frac{\sqrt{n}+m}{k}{\small-\lambda(m,k)}\big)k>0,\;\sqrt{n}+m_1>\sqrt{n}-m>0
\therefore\;k\mid n-m^2+2mk\lambda-(k\lambda)^2=n-m_1^2>0,\;(m_1,k_1)\in F(n)
令\,\psi: (m,k)\overset{\psi}{\mapsto}(m_1,k_1)\;\;\big(\frac{k}{\sqrt{n}+m}=\frac{k}{k\lambda+\sqrt{n}-m_1}=\frac{1}{\lambda+\large\frac{k_1}{\sqrt{n}+m_1}}\big)
(m_j,k_j)=\psi^{\langle j\rangle}(m,k),\;\lambda_j=\lambda(m_{j-1},k_{j-1})\;(\psi^{\langle k+1\rangle}=\psi(\psi^{\langle k\rangle}))
定义\,[a,b]=a+\large\frac{1}{[\,b]},\,则有\small\,1\le m,\,L\in\mathbb{N}\,使\small(m_{u+L},k_{u+L})=(m_u,k_u)
\,\frac{k}{\sqrt{n}+m}=[0,\lambda_1+\frac{k_1}{\sqrt{n}+m_1}]=[0,\lambda_1,\ldots,\lambda_{u}+\frac{k_u}{\sqrt{n}+m_u}]
\qquad\cdots=[0,\lambda_1,\ldots,\lambda_{u},\ldots,\lambda_{u+L}+\frac{k_{u+L}}{\sqrt{n}+m_{u+L}}]
\qquad\quad\;=[0,\lambda_1,\ldots,\lambda_{u},\dot{\lambda}_{u+1},\ldots,\dot{\lambda}_{u+L}]
\qquad\quad\;=[0,\lambda_1,\ldots,\lambda_{u},\overline{{\lambda}_{u+1},\ldots,\lambda}_{u+L}]
这是因为F(n)是有限集.
取\,m,k\in\mathbb{N}\,使\small\,m^2< n< (m+1)^2,\,k=n-m^2,\,则\small\,(m,k)\in F(n).
可见\,\sqrt{n}=[m;\lambda_1,\ldots,\lambda_u,\overline{\lambda_{u+1},\ldots,\lambda}_{u+L}]\,是循环连分数.
命题 若\,a_i\in\mathbb{N}^+,\;\alpha=[\overline{a_1,\ldots,a}_L]\;\small(L>1)\,
\qquad则\,\alpha\,是整系数二次方程的根.
证明:此时\,\alpha=[a_1,\ldots,a_L+\alpha]. 当\,L=2\,时
\,\alpha=a_1+\large\frac{1}{a_2+\alpha}\;即\,\alpha^2+(a_2-a_1)\alpha-a_1a_2-1=0
当\,L>2\,时\,\alpha=[a_1,\ldots,a_L+\alpha]=[a_1,\ldots,a_{L-1}+\frac{1}{a_L+\alpha}]
所以据归纳法原理, 命题对一切L>1成立.
推论1 循环连分数的值具有一般形式\,\frac{u\pm\sqrt{|v|}}{w}\;\small(u,v,w\in\mathbb{Z})
推论2 若\,k,\,n\in\mathbb{N}^+,\, k>2,\,\sqrt[k]{n}\not\in\mathbb{N},\,则
\qquad\sqrt[k]{n}\,的连分数表示是无穷不循环的. 这有点出乎意料. |
|