|

楼主 |
发表于 2020-11-14 03:19
|
显示全部楼层
题:试证\(\;\;\displaystyle\lim_{n\to\infty}{\small\frac{\scriptsize 1}{n}\big(\frac{n}{\frac{1}{2}+\frac{2}{3}+\cdots+\frac{n-k-1}{n-k}}\big)^n=\;}e^{\gamma+k}\;\;\small(k\in\mathbb{Z}).\)
证:\(\because\underset{\,}{\;}\frac{1}{2}+\cdots+\frac{n-k-1}{n-k}\small=n-k-H_{n-k-1}\)
\(\qquad\qquad\qquad\qquad\qquad\;\small=n-(\gamma_{n-k-1}+\ln(n-k-1)+k)\)
\(\therefore\underset{\,}{\quad}x_n=\frac{1}{n}\big(\frac{1}{1-a_n}\big)^n_,\;(na_n{\small=\gamma_{n-k-1}+k+\ln(n-k-1)=O(\ln n)}).\)
\(\therefore\underset{\,}{\quad}\ln x_n=-n\ln(1-a_n)-\ln n=n(a_n+O(a_n^2))-\ln n\)
\(\qquad=\gamma_{n+1}+k+\ln(1-\frac{k+1}{n})+O(\frac{\ln^2 n}{n})\to\gamma+k.\quad\small\square\)
注记:\(\displaystyle\lim_{n\to\infty}{\small\frac{\scriptsize 1}{n}\big(\frac{n}{\frac{1}{2}+\frac{2}{3}+\cdots+\frac{n-1}{n}}\big)^n=\;}e^{\gamma}\) |
|