|
首先注意到\(\,\lfloor x+1\rfloor =1+\lfloor x\rfloor\,\)对一切\(\,x\,\)成立,
故对 \(\tau(x):=x-\lfloor x\rfloor\in[0,1)\) (\(\,x\,\)的小数部分)
有\(\,\tau(x+1){\small=x+1-\lfloor x+1\rfloor=x+1-(\lfloor x\rfloor +1)=}\tau(x)\)
即\(\,1\,\)是\(\,\tau(x)\,\)的周期. 若\(\small\,d\in(0,1),\)取\(\,x\small=(1-d)/2,\)
则\(\,\tau(x+d)=x+d-\lfloor x+d\rfloor=x+d>x=\tau(x)\)
故\(\,\tau(x)\,\)的最小周期是\(\,1.\) |
|