|

楼主 |
发表于 2020-12-4 08:41
|
显示全部楼层
题: 试证:\(\;(x(t),y(t))=(\cos u\cos t,-\sin u\sin v\cos t+\cos v\sin t)\)
是椭圆的参数表示. 其中实数\(\;u,v\ne \frac{1}{2}k\pi,\;k\in\mathbb{Z}\)
解: 由\(\;\begin{bmatrix}x\\y\end{bmatrix}=\begin{bmatrix}\cos u& 0\\-\sin u\sin v&\cos v\end{bmatrix}\begin{bmatrix}\cos t\\\sin t\end{bmatrix}\)
\(\qquad\)简记\(\,c_w = \cos w,\, s_w = \sin w,\; t_w = \tan w,\,\)则
\(\qquad\begin{bmatrix}c_t\\s_t\end{bmatrix}=\begin{bmatrix}\frac{1}{\large c_u}&0\\t_ut_v&\frac{1}{\large c_v}\end{bmatrix}\begin{bmatrix}x\\y\end{bmatrix}\)
\(\qquad 1=(\frac{x}{c_u})^2+(t_ut_v x+\frac{y}{c_v})^2\)
\(\therefore\quad(\cos^2v+\sin^2u\sin^2v)x^2+2(\cos u\sin u\sin v) xy+(\cos^2 u) y^2=\cos^2u\cos^2 v\)
\(\qquad\)是椭圆.
待续.....
|
|