|

楼主 |
发表于 2020-12-3 14:19
|
显示全部楼层
解整数方程 615+x^2=2^y
\(615+x^2=2^y\implies 615+x^2\pmod{10}\in\{4,6\} \)
\(2^y\pmod{10}\in\{4,6\}\implies y=2n\implies 615=(2^n+x)(2^n-x)\)
\(\because\;615=3\times 205=15\times 41=5\times 123,\,\)仅\(\,5+123=2^7\) 是\(2\)的幂,
故\(\,n=6,\,y=12,\;x = \sqrt{2^{12}-615}=59.\) |
|