|
elim 发表于 2020-12-27 13:31
最大值是 \(\sqrt{1+\big(\sqrt{3}-\sqrt{\pi/2}\big)^2}=\sqrt{4+\pi/2-\sqrt{6\pi}}\)
\(\qquad\quad=1. ...
20楼是错的。
\(1,0<x≤\frac{\pi}{2},0<y≤\frac{\pi}{2},设z_{1}=\frac{\cos(x)}{\sin(y)}+i\frac{\cos(y)}{\sin(x)},且|z_{1}|=\sqrt{n}\ \ \ n=1, 2, 3, 4, 5, ...\)
\(若z_{2}=\sqrt{x}+i\sqrt{y},则|z_{1}-z_{2}|的最大值(两端)=\sqrt{1+(\sqrt{n-1}-\sqrt{\frac{\pi}{2}})^2}\)
\(2,0<x<\frac{\pi}{2},0<y<\frac{\pi}{2},设z_{1}=\frac{\cos(x)}{\sin(y)}+i\frac{\cos(y)}{\sin(x)},且|z_{1}|=\sqrt{n}\ \ \ n=1, 2, 3, 4, 5, ...\)
\(若z_{2}=\sqrt{x}+i\sqrt{y},则|z_{1}-z_{2}|的最大值(中间)=n-\sqrt{2 arccot\big(\frac{n}{\sqrt{2}}\big)},x=y=arccot\sqrt{\frac{n}{\sqrt{2}}}\) |
|