|
本帖最后由 denglongshan 于 2021-1-30 22:19 编辑
先构造单位圆,圆心在原点,圆上取一点E,构造E关于实轴和虚轴的点,再作切线构造菱形顶点,把椭圆方程改写成复数形式。
\(假设Z_1和Z_2是过P点与椭圆的交点,欲证明OZ_1垂直OZ_2,只要证明\)
\(\frac{z_1}{\bar{z_1}}=-\frac{z_2}{\bar{z_2}}即可,即\frac{z_1}{\bar{z_1}}+\frac{z_2}{\bar{z_2}}=0,因为Z_1、Z_2在过P点的切线,\)有\(z_1+p^2\bar{z_1}=2p,z_2+p^2\bar{z_2}=2p,所以\frac{z_1}{\bar{z_1}}+\frac{z_2}{\bar{z_2}}+2p^2=2p\frac{\bar{z_1}+\bar{ z_2}}{\bar{z_1} \bar{ z_2}}\),\(显然\bar{z_1}和\bar{ z_2}是方程的两个根,根据韦达定理和上图的计算结果得\frac{\bar{z_1}+\bar{ z_2}}{\bar{z_1} \bar{ z_2}}=p,结论得证\)
很困惑为什么同样的方程得出不同的结论?解方程不能证明?Mathematica软件会出错吗? |
本帖子中包含更多资源
您需要 登录 才可以下载或查看,没有帐号?注册
x
|