|

楼主 |
发表于 2021-2-7 22:39
|
显示全部楼层
喜欢四两拨千斤的:
易见\(I=\int_0^\frac{\pi}{2}\sqrt{\tan(x)}\,dx=\int_0^\frac{\pi}{2}\sqrt{\cot(x)}\,dx.\) 故有
\begin{align*}
2I&=\int_0^\frac{\pi}{2}\left(\sqrt{\tan(x)}+\sqrt{\cot(x)}\right)\,dx\\
&=\int_0^\frac{\pi}{2}\left(\sqrt{\frac{\sin(x)}{\cos(x)}}+\sqrt{\frac{\cos(x)}{\sin(x)}}\right)\,dx\\
&=\int_0^\frac{\pi}{2}\frac{\sin(x)+\cos(x)}{\sqrt{\sin(x)\cos(x)}}\,dx\\
\end{align*}
作代换\(u=\sin x-\cos x\) 得,
\begin{align*}
2I&=\int_{-1}^1 \frac{1}{\sqrt{\frac{1}{2}(1-u^2)}}\,du\\
&=\sqrt{2} \left[\arcsin(u)\right]_{-1}^1\\
&=\pi\sqrt{2}
\end{align*}
\(\therefore\quad I=\dfrac{\pi}{\sqrt{2}}\)
|
|