数学中国

 找回密码
 注册
搜索
热搜: 活动 交友 discuz
查看: 4851|回复: 1

角谷猜想的证明

[复制链接]
发表于 2021-4-15 16:35 | 显示全部楼层 |阅读模式
[size=15.0000pt]角谷猜想的证明
[size=12.0000pt] [size=12.0000pt]13533050293
[size=12.0000pt]
[size=15.0000pt]摘要[size=14.0000pt]:[size=10.5000pt]本文甪数学归纳法证明了角谷猜想,即假设[size=10.5000pt]357一直到2m+1猜想成立,用角谷猜想变换法则证明2m+3m无论是奇数还是偶数猜想都成立,彻底证明了角谷猜想。
[size=10.5000pt]
[size=10.5000pt]关键词:整数的奇偶性,缩放法,数学归纳法。[size=10.5000pt]
[size=10.5000pt]
[size=15.0000pt]引言[size=15.0000pt]:[size=10.5000pt]本文用数学归纳法解决了数学中至今公开渠道还未彻底解决的角谷猜想,该猜想
[size=10.5000pt]通过计算机验证到了 [size=10.5000pt]7*10^11[size=10.5000pt],于是人们有充份理由猜想它是成立的,但缺少一个令人信服[size=10.5000pt]的证明,我经过几十年的努力先是于 [size=10.5000pt]2010 [size=10.5000pt]年部份证明了它并得到数学专业人士的肯定,针对他们的建议十年以后终于完全证明了它,使角谷猜想成为角谷定理。
[size=10.5000pt]
[size=10.5000pt]角谷猜想指的是当 [size=10.5000pt]N[size=10.5000pt] 是偶数时做 [size=10.5000pt]N/2,N[size=10.5000pt] 是奇数时做 [size=10.5000pt]3N+1[size=10.5000pt],如此反复运算其结果必然等于 [size=10.5000pt]1。验证:
[size=10.5000pt]N=3,有 10-5-16-8-4-2-1, N=5,有 16-8-4-2-1,
[size=10.5000pt]N=7,有 22-11-34-17-52-26-13-40-20-10-5-16-8-4-2-1,
[size=10.5000pt]
[size=10.5000pt]
[size=10.5000pt]明显只要证明 [size=10.5000pt]N[size=10.5000pt] 是奇数时角谷猜想成立即可,设 [size=10.5000pt]N[size=10.5000pt] 大于 [size=10.5000pt]7,N=2m+1,m[size=10.5000pt] 只有奇数和偶数两种情[size=10.5000pt]形,先证明 [size=10.5000pt]m[size=10.5000pt] 是奇数时的情形,因 [size=10.5000pt]3,5,7[size=10.5000pt] 猜想验证成立,故可假设 [size=10.5000pt]m[size=10.5000pt] 直到奇数时,[size=10.5000pt]3,5, 7...2m+1[size=10.5000pt] 猜想成立,做 [size=10.5000pt]N+2=2m+3[size=10.5000pt].如能证明 [size=10.5000pt]2m+3[size=10.5000pt] 角谷猜想成立,则 [size=10.5000pt]m [size=10.5000pt]是奇数时该猜想成立。[size=10.5000pt]([size=10.5000pt]数学归纳法[size=10.5000pt])
[size=10.5000pt]
[size=10.5000pt] [size=10.5000pt]2m+3[size=10.5000pt] 是奇数,做 [size=10.5000pt]3*(2m+3)+1=6m+10[size=10.5000pt] 是偶数,除以 [size=10.5000pt]2[size=10.5000pt] 等于 [size=10.5000pt]3m+5[size=10.5000pt] 是偶数,设 [size=10.5000pt]3m+5=2[size=10.5000pt]k[size=10.5000pt]n[size=10.5000pt],
[size=10.5000pt]k 是指数,n 是奇数)
[size=10.5000pt]
[size=10.5000pt]
[size=10.5000pt]当[size=10.5000pt] [size=10.5000pt]m[size=10.5000pt] [size=10.5000pt]大于[size=10.5000pt] [size=10.5000pt]3[size=10.5000pt] [size=10.5000pt]时,[size=10.5000pt]2m+[size=10.5000pt]1[size=10.5000pt]>[size=10.5000pt]([size=10.5000pt]3m+[size=10.5000pt]5[size=10.5000pt])[size=10.5000pt]/2>[size=10.5000pt]([size=10.5000pt]3m+[size=10.5000pt]5[size=10.5000pt])/2[size=10.5000pt]2[size=10.5000pt]>……[size=10.5000pt]>(3[size=10.5000pt]m[size=10.5000pt]+5)[size=10.5000pt]/[size=10.5000pt]2[size=10.5000pt]k[size=10.5000pt],即[size=10.5000pt] [size=10.5000pt]N+[size=10.5000pt]2[size=10.5000pt] [size=10.5000pt]落于[size=10.5000pt] [size=10.5000pt]3[size=10.5000pt],[size=10.5000pt]5[size=10.5000pt],[size=10.5000pt]7[size=10.5000pt]……[size=10.5000pt]2m[size=10.5000pt]-[size=10.5000pt]1[size=10.5000pt]中,此前假设成立,故 [size=10.5000pt]m [size=10.5000pt]是奇数时角谷猜想成立。
[size=10.5000pt]
[size=10.5000pt]                          

[size=10.5000pt]
[size=10.5000pt] [size=10.5000pt]m [size=10.5000pt]是偶数,可设 [size=10.5000pt]m= [size=10.5000pt]2[size=10.5000pt]k [size=10.5000pt]n[size=10.5000pt],[size=10.5000pt](n [size=10.5000pt]是奇数[size=10.5000pt]) [size=10.5000pt]此时可假设 [size=10.5000pt]3[size=10.5000pt],[size=10.5000pt]5[size=10.5000pt],[size=10.5000pt]7...2m+1 [size=10.5000pt]猜想成立,做 [size=10.5000pt]N+2=2m+3,
[size=10.5000pt]
[size=10.5000pt]
[size=10.5000pt] [size=10.5000pt]N+2= 2[size=10.5000pt]k [size=10.5000pt]+[size=10.5000pt]1 [size=10.5000pt]n+3 [size=10.5000pt]是奇数,做 [size=10.5000pt]3(N+2)+1=3 2[size=10.5000pt]k [size=10.5000pt]+[size=10.5000pt]1 [size=10.5000pt]n+10 [size=10.5000pt]是偶数,除以 [size=10.5000pt]2 [size=10.5000pt] [size=10.5000pt]3 2[size=10.5000pt]k [size=10.5000pt]n+5 [size=10.5000pt]是奇数,做
[size=10.5000pt]
[size=10.5000pt]3(3 2[size=10.5000pt]k [size=10.5000pt]n+5)+1= 3[size=10.5000pt]2 [size=10.5000pt]2[size=10.5000pt]k [size=10.5000pt]n+16 [size=10.5000pt]是偶数,除以 [size=10.5000pt]16 [size=10.5000pt] [size=10.5000pt]2[size=10.5000pt]4 [size=10.5000pt]得[size=10.5000pt]3[size=10.5000pt]2 [size=10.5000pt]2[size=10.5000pt]k [size=10.5000pt]-[size=10.5000pt]4 [size=10.5000pt]n+1 [size=10.5000pt]是奇数,做 [size=10.5000pt]3( 3[size=10.5000pt]2 [size=10.5000pt]2[size=10.5000pt]k [size=10.5000pt]-[size=10.5000pt]4 [size=10.5000pt]n+1)+1[size=10.5000pt],
[size=10.5000pt]
[size=10.5000pt]即[size=10.5000pt]3[size=10.5000pt]3 [size=10.5000pt]2[size=10.5000pt]k [size=10.5000pt]-[size=10.5000pt]4 [size=10.5000pt]n+4 [size=10.5000pt]是偶数,除以 [size=10.5000pt]4 [size=10.5000pt]得[size=10.5000pt]3[size=10.5000pt]3 [size=10.5000pt]2[size=10.5000pt]k [size=10.5000pt]-[size=10.5000pt]6 [size=10.5000pt]n+1 [size=10.5000pt]是奇数,做 [size=10.5000pt]3( 3[size=10.5000pt]3 [size=10.5000pt]2[size=10.5000pt]k [size=10.5000pt]-[size=10.5000pt]6 [size=10.5000pt]n+1)+1= 3[size=10.5000pt]4 [size=10.5000pt]2[size=10.5000pt]k [size=10.5000pt]-[size=10.5000pt]6 [size=10.5000pt]n+4 [size=10.5000pt]是偶数,除以 [size=10.5000pt]4 [size=10.5000pt]得[size=10.5000pt]3[size=10.5000pt]4 [size=10.5000pt]2[size=10.5000pt]k [size=10.5000pt]-[size=10.5000pt]8 [size=10.5000pt]n+1 [size=10.5000pt]是奇数,做 [size=10.5000pt]3( 3[size=10.5000pt]4 [size=10.5000pt]2[size=10.5000pt]k [size=10.5000pt]-[size=10.5000pt]8 [size=10.5000pt]n+1)+1 [size=10.5000pt]即[size=10.5000pt]3[size=10.5000pt]5 [size=10.5000pt]2[size=10.5000pt]k [size=10.5000pt]-[size=10.5000pt]8 [size=10.5000pt]n+4 [size=10.5000pt]是偶数,除以 [size=10.5000pt]4 [size=10.5000pt]得[size=10.5000pt]3[size=10.5000pt]5 [size=10.5000pt]2[size=10.5000pt]k [size=10.5000pt]-[size=10.5000pt]10 [size=10.5000pt]n+1[size=10.5000pt],
[size=10.5000pt]
[size=10.5000pt]如法演算即有: [size=10.5000pt]3[size=10.5000pt]6 [size=10.5000pt]2[size=10.5000pt]k [size=10.5000pt]-[size=10.5000pt]12 [size=10.5000pt]n+1[size=10.5000pt] [size=10.5000pt]3[size=10.5000pt]7 [size=10.5000pt]2[size=10.5000pt]k [size=10.5000pt]-[size=10.5000pt]14 [size=10.5000pt]n+1......
[size=10.5000pt]
[size=12.0000pt]发现运算有规律,即[size=12.0000pt] [size=12.0000pt]3[size=12.0000pt] [size=12.0000pt]的指数每增加[size=12.0000pt] [size=12.0000pt]1[size=12.0000pt],[size=12.0000pt]2[size=12.0000pt] [size=12.0000pt]的指数则减少[size=12.0000pt] [size=12.0000pt]2[size=12.0000pt],设[size=12.0000pt] [size=12.0000pt]3[size=12.0000pt] [size=12.0000pt]的指数是[size=12.0000pt] [size=12.0000pt]r[size=12.0000pt],则有
[size=10.5000pt]3[size=10.5000pt]r[size=10.5000pt]   [size=10.5000pt]2[size=10.5000pt]k[size=10.5000pt] [size=10.5000pt]-[size=10.5000pt]2[size=10.5000pt]r[size=10.5000pt]  [size=10.5000pt]n[size=10.5000pt]+[size=10.5000pt]1[size=10.5000pt],[size=10.5000pt]因为每乘以 [size=10.5000pt]3 [size=10.5000pt] [size=10.5000pt]3 [size=10.5000pt]的指数增加 [size=10.5000pt]1[size=10.5000pt],除以[size=10.5000pt]2[size=10.5000pt]2 [size=10.5000pt] [size=10.5000pt]2 [size=10.5000pt]的指数减少 [size=10.5000pt]2[size=10.5000pt],过程可以有限次重复。
[size=12.0000pt]k[size=12.0000pt]-[size=12.0000pt]2[size=12.0000pt]r[size=12.0000pt] [size=12.0000pt]只能是[size=12.0000pt] [size=12.0000pt]0[size=12.0000pt],[size=12.0000pt]1[size=12.0000pt],[size=12.0000pt]k[size=12.0000pt] [size=12.0000pt]是偶数可为[size=12.0000pt] [size=12.0000pt]0[size=12.0000pt],[size=12.0000pt]k[size=12.0000pt] [size=12.0000pt]是奇数可为[size=12.0000pt] [size=12.0000pt]1[size=12.0000pt],如[size=12.0000pt] [size=12.0000pt]k[size=12.0000pt]=[size=12.0000pt]2[size=12.0000pt]r[size=12.0000pt],则有[size=12.0000pt]3[size=12.0000pt]r[size=12.0000pt]  [size=12.0000pt]n[size=12.0000pt]+[size=12.0000pt]1[size=12.0000pt] [size=12.0000pt]是偶数[size=10.5000pt],
[size=12.0000pt]设[size=12.0000pt]3[size=12.0000pt]r[size=12.0000pt] [size=12.0000pt]n[size=12.0000pt]+[size=12.0000pt]1[size=12.0000pt]=[size=12.0000pt] [size=12.0000pt]2[size=12.0000pt]i[size=12.0000pt] [size=12.0000pt]t[size=10.5000pt],
[size=10.5000pt]
[size=10.5000pt]2m+1[size=10.5000pt]= [size=10.5000pt]2[size=10.5000pt]2[size=10.5000pt]r[size=10.5000pt] [size=10.5000pt]+[size=10.5000pt]1[size=10.5000pt] [size=10.5000pt]n+1[size=10.5000pt]>( [size=10.5000pt]3[size=10.5000pt]r[size=10.5000pt] [size=10.5000pt]n+1)/2[size=10.5000pt]>( [size=10.5000pt]3[size=10.5000pt]r[size=10.5000pt] [size=10.5000pt]n+1)/[size=10.5000pt] [size=10.5000pt]2[size=10.5000pt]2[size=10.5000pt]        [size=10.5000pt]>( 3[size=10.5000pt]r [size=10.5000pt]n+1)/[size=10.5000pt] [size=10.5000pt]2[size=10.5000pt]i
[size=10.5000pt] [size=10.5000pt]N+2[size=10.5000pt] 落于 [size=10.5000pt]3,5,7……2m-1[size=10.5000pt] 中,此前假设成立,故 [size=10.5000pt]m= [size=10.5000pt]2[size=10.5000pt]k [size=10.5000pt]n[size=10.5000pt][size=10.5000pt]k=2r [size=10.5000pt]时角谷猜想成立。[size=10.5000pt] [size=10.5000pt]k=2r+1[size=10.5000pt] [size=10.5000pt]3[size=10.5000pt]r [size=10.5000pt]2n+1 [size=10.5000pt]是奇数,做 [size=10.5000pt]3[size=10.5000pt]( [size=10.5000pt]3[size=10.5000pt]r [size=10.5000pt]2n+1)+1[size=10.5000pt]= [size=10.5000pt]3[size=10.5000pt]r [size=10.5000pt]+[size=10.5000pt]1 [size=10.5000pt]2n+4[size=10.5000pt],除以 [size=10.5000pt]2 [size=10.5000pt]有[size=10.5000pt]3[size=10.5000pt]r [size=10.5000pt]+[size=10.5000pt]1 [size=10.5000pt]n+2 [size=10.5000pt]是奇数,
[size=10.5000pt]
[size=10.5000pt]3( 3[size=10.5000pt]r [size=10.5000pt]+[size=10.5000pt]1 [size=10.5000pt]n+2)+1[size=10.5000pt],即[size=10.5000pt]3[size=10.5000pt]r [size=10.5000pt]+[size=10.5000pt]2 [size=10.5000pt]n+7 [size=10.5000pt]是偶数,设[size=10.5000pt]3[size=10.5000pt]r [size=10.5000pt]+[size=10.5000pt]2 [size=10.5000pt]n+7= 2[size=10.5000pt]s [size=10.5000pt]w
[size=10.5000pt]
[size=10.5000pt]k=2r+1[size=10.5000pt],[size=10.5000pt]m= [size=10.5000pt]2[size=10.5000pt]k [size=10.5000pt]n[size=10.5000pt] [size=10.5000pt]时,[size=10.5000pt]        [size=10.5000pt]2m+1=[size=10.5000pt] [size=10.5000pt]2[size=10.5000pt]2r[size=10.5000pt]+[size=10.5000pt]2[size=10.5000pt] [size=10.5000pt]n+1>([size=10.5000pt] [size=10.5000pt]3[size=10.5000pt]r[size=10.5000pt] [size=10.5000pt]+[size=10.5000pt]2[size=10.5000pt] [size=10.5000pt]n+7)/2>([size=10.5000pt] [size=10.5000pt]3[size=10.5000pt]r[size=10.5000pt] [size=10.5000pt]+[size=10.5000pt]2[size=10.5000pt] [size=10.5000pt]n+7)/[size=10.5000pt] [size=10.5000pt]2[size=10.5000pt]2[size=10.5000pt]        [size=10.5000pt]>([size=10.5000pt] [size=10.5000pt]3[size=10.5000pt]r[size=10.5000pt] [size=10.5000pt]+[size=10.5000pt]2[size=10.5000pt] [size=10.5000pt]n+7)/[size=10.5000pt] [size=10.5000pt]2[size=10.5000pt]s
[size=10.5000pt]
[size=10.5000pt]
[size=10.5000pt] [size=10.5000pt]N+2[size=10.5000pt] 落于 [size=10.5000pt]3,5,7……2m-1[size=10.5000pt] 中,此前假设成立,故 [size=10.5000pt]m= [size=10.5000pt]2[size=10.5000pt]k [size=10.5000pt]n[size=10.5000pt],[size=10.5000pt]k=2r+1 [size=10.5000pt]时角谷猜想成立。[size=10.5000pt]综上所述 [size=10.5000pt]m [size=10.5000pt]是奇数或偶数角谷猜想都成立,此猜想获证。
[size=10.5000pt]

 楼主| 发表于 2021-4-15 16:43 | 显示全部楼层
为何用word编辑后提交后成乱码,有人知道如何操作?
回复 支持 反对

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

Archiver|手机版|小黑屋|数学中国 ( 京ICP备05040119号 )

GMT+8, 2025-7-18 15:53 , Processed in 0.082713 second(s), 16 queries .

Powered by Discuz! X3.4

Copyright © 2001-2020, Tencent Cloud.

快速回复 返回顶部 返回列表