|
\(1,s=矩形面积-3个三角形面积。\)
\(s = (3 y) (4 z) -\frac{3y^2}{2} - \frac{4 x^2}{2} -\frac{ 20 z^2}{2}, y^2 + (3 y)^2 = 90^2, x + y = 4 z, 3 y = 4 x + 5 z,\)
\(简单一点,观察可知\ y=3x=3z,\ \ (3x)^2+(9x)^2=90^2,\ \ x^2=90\)
\(s = (9x) (4x)-\frac{(9x)(3x)}{2} - \frac{x(4x)}{2} -\frac{(5x)(4x)}{2}=\frac{(72-27-4-20)x^2}{2}=\frac{21x^2}{2}=\frac{21*90}{2}=945\)
\(2,s=三角形(3条边=a, b, 90)面积。\)
\(2s =a b\sin(\tan^{-1}\frac{1}{4} +\tan^{-1}\frac{4}{5})=90b\sin(\tan^{-1}\frac{4}{1} +\tan^{-1}\frac{3}{1}) =90a\cos(\tan^{-1}\frac{1}{3} +\tan^{-1}\frac{5}{4})\)
{{s -> 945, a -> 3 Sqrt[410], b -> 3 Sqrt[170]}} |
|