数学中国

 找回密码
 注册
搜索
热搜: 活动 交友 discuz
楼主: yangchuanju

整除猜想

[复制链接]
 楼主| 发表于 2021-5-4 06:25 | 显示全部楼层
本帖最后由 yangchuanju 于 2021-5-4 06:57 编辑

(100^5t-10^5t+1)/(100^t-10^t+1)等于什么?(五)
太阳素数问题中的大分母(100^5t-10^5t+1)/(100^t-10^t+1)的值可以是单一个φ因子,如t等于1、2、3、4、5、6、8、9、10、12、15、16、18、20;但更多的是等于两个或多个φ因子的乘积,如t等于7、11、13、14、17、19、21、22、23、28、29等。
在计算(100^5t-10^5t+1)/(100^t-10^t+1)的值时,只要t中含有除3和5以外的素数时,就等于几个φ因子的乘积了。最小的t分解式是:
7=7*1,14=7*2,21=7*3,28=7*4,35=7*5,42=7*6,49=7*7*1,56=7*8,……;
11=11*1,22=11*2,33=11*3,44=11*4,55=11*5,66=11*6,……;
77=7*11*1,91=7*13*1,143=11*13*1,……
在这些分解式中1被当做1处理,含素数7、11、13、17的t,可分解成几个数字乘积,计算(100^5t-10^5t+1)/(100^t-10^t+1)的值时就要用几个φ因子相乘。
回复 支持 反对

使用道具 举报

 楼主| 发表于 2021-5-6 08:10 | 显示全部楼层
(100^5t-10^5t+1)/(100^t-10^t+1)等于什么?(六)
71楼(100^5t-10^5t+1)/(100^t-10^t+1)等于什么?(五)中说,7=7*1,14=7*2,分别表示t=7和t=14时(100^5t-10^5t+1)/(100^t-10^t+1)等于φ210*φ30和φ210*φ60;……
t=49=7*7*1表示(100^5t-10^5t+1)/(100^t-10^t+1)等于φ1470*φ210*φ30;
t=56=7*8表示(100^5t-10^5t+1)/(100^t-10^t+1)等于φ210*φ240;……
t=11=11*1表示(100^5t-10^5t+1)/(100^t-10^t+1)等于φ330*φ30;
t=22=11*2表示(100^5t-10^5t+1)/(100^t-10^t+1)等于φ330*φ60;……
t=77=7*11*1表示(100^5t-10^5t+1)/(100^t-10^t+1)等于φ2310*φ210*φ330*φ30;
t=91=7*13*1表示(100^5t-10^5t+1)/(100^t-10^t+1)等于φ2730*φ210*φ390*φ30;
t=143=11*13*1表示(100^5t-10^5t+1)/(100^t-10^t+1)等于φ4290*φ330*φ390*φ30;
…………
回复 支持 反对

使用道具 举报

 楼主| 发表于 2021-5-6 08:11 | 显示全部楼层
本帖最后由 yangchuanju 于 2021-5-6 08:17 编辑

(100^5t-10^5t+1)/(100^t-10^t+1)等于什么?(七)
接72楼(六),令t=210=7*30,t=2310=7*11*30时(100^5t-10^5t+1)/(100^t-10^t+1)等于什么?
例1,t=210=7*30,30t=6300,位数w=210*8+1=1681,(100^5t-10^5t+1)/(100^t-10^t+1)=φ6300*φ900=φ6300L*φ6300M*φ900L*φ900M,4φ因子乘积位数w=721+720+121+120-1=1681。
Φ6300L(10) = 1000000100...<721> = 6301 × 398230717501<12> × 19885398988994579655121501<26> × 429302031033340221027910488160800301<36> × [4668297825...<644>](10.60%)
Φ6300M(10) = 9999999000...<720> = 12601 × 19240201 × 47997177034410877548362717701<29> × [8593491371...<680>](5.56%)
Φ900L(10) = 1000000100...<121> = 1801 × 33301 × 139501 × 560701 × 5030101 × 152372720018473862927761564984708391701<39> × 278122726554927608421392646682775110116681922088002932901<57>(100.00%)
Φ900M(10) = 9999999000...<120> = 999999900000004999999899999998000000199999995000000000000002999999999999995000000199999997999999900000004999999900000001<120>(100.00%)

例2,t=420=7*60,30t=12600,w=420*8+1=3361,(100^5t-10^5t+1)/(100^t-10^t+1)=φ12600*φ1800,w=2880+481=3361
Φ12600(10) = 9999999999...<2880> = 6738791572801<13> × [1483945584...<2868>](0.45%)
Φ1800(10) = 1000000000...<481> = 321473851171201<15> × 178601070881582358375601<24> × 1216057084775405433757097429262954022602494154001<49> × [1432241739...<395>](17.88%)

例3,t=630=7*90,30t=18900,w=630*8+1=5041,(100^5t-10^5t+1)/(100^t-10^t+1)=φ18900*φ2700,w=2161+2160+361+360-1=5041
Φ18900L(10) = 1000000000...<2161> = 151201 × 1096201 × 15433795925101<14> × [3909150484...<2136>](1.13%)
Φ18900M(10) = 9999999999...<2160> = 1007219105959629530225556901<28> × [9928326360...<2133>](1.25%)
Φ2700L(10) = 1000000000...<361> = 46451545582789362601<20> × 58492177198550575553528635501<29> × 3680459508...<312>(100.00%)
Φ2700M(10) = 9999999999...<360> = 3933901 × 34146901 × 8359025705527014660939301<25> × 8751155967804851127450182913301<31> × 30504342109530022290339930441561275249401<41> × 156769564119516597956194927133905066434402684839835301<54> × 71618803865606542412383896587352242997259054038820075447553395780556284501401142201<83> × 297134935059434848691686488189687003283048362636793125222145082651787396540653146423539079787300761023519093629701<114>(100.00%)

例4,t=1470=7*210=7*7*30,30t=44100,w=1470*8+1=11761,(100^5t-10^5t+1)/(100^t-10^t+1)=φ44100*φ6300*φ900,
其中44100=1470*30, 6300=210*30,900=30*30,
w=5041+5040+721+720+121+120=11522+241=11763,总乘积位数减2等于11761位。
Φ44100L(10) = 1000000000...<5041> = 44101 × [2267522278...<5036>](0.09%)
Φ44100M(10) = 9999999999...<5040> = [9999999999...<5040>](0.00%)
Φ14700L(10) = 1000000000...<1681> = 2818504501<10> × [3547980851...<1671>](0.56%)
Φ14700M(10) = 9999999999...<1680> = 2842514906701<13> × 1756752669517474152301<22> × 2149920959540210020801252281863469301<37> × [9314598364...<1610>](4.17%)
Φ6300L(10) = 1000000100...<721> = 6301 × 398230717501<12> × 19885398988994579655121501<26> × 429302031033340221027910488160800301<36> × [4668297825...<644>](10.60%)
Φ6300M(10) = 9999999000...<720> = 12601 × 19240201 × 47997177034410877548362717701<29> × [8593491371...<680>](5.56%)
Φ1470(10) = 9999999000...<336> = 5650149331<10> × 11933166001<11> × 117601149473851<15> × 2622832433505481<16> × [4808418242...<287>](14.68%)
Φ900L(10) = 1000000100...<121> = 1801 × 33301 × 139501 × 560701 × 5030101 × 152372720018473862927761564984708391701<39> × 278122726554927608421392646682775110116681922088002932901<57>100.00%)
Φ900M(10) = 9999999000...<120> = 999999900000004999999899999998000000199999995000000000000002999999999999995000000199999997999999900000004999999900000001<120>(100.00%)

例5,t=2310=7*11*30,30t=69300,w=2310*8+1=18481,(100^5t-10^5t+1)/(100^t-10^t+1)=φ69300*φ9900*φ6300*φ900,
其中69300=2310*30,9900=330*30,6300=210*30,900=30*30,
W=7201+7200+1201+1200+721+720+121+120=18484,总乘积位数减,3等于18481位。
30t=9900,t=330=11*30,w=330*8+1=2641,
Φ69300L(10) = 1000000100...<7201> = 1810164716148165301<19> × [5524359695...<7182>](0.25%)
Φ69300M(10) = 9999999000...<7200> = 346501 × 23631301 × 391600786501<12> × [3118633048...<7176>](0.34%)
Φ9900L(10) = 1000000100...<1201> = 19801 × 7954043227010351915401<22> × [6349287209...<1174>](2.18%)
Φ9900M(10) = 9999999000...<1200> = 126937801 × 75705013226701<14> × [1040601257...<1179>](1.83%)
Φ6300L(10) = 1000000100...<721> = 6301 × 398230717501<12> × 19885398988994579655121501<26> × 429302031033340221027910488160800301<36> × [4668297825...<644>](10.60%)
Φ6300M(10) = 9999999000...<720> = 12601 × 19240201 × 47997177034410877548362717701<29> × [8593491371...<680>](5.56%)
Φ900L(10) = 1000000100...<121> = 1801 × 33301 × 139501 × 560701 × 5030101 × 152372720018473862927761564984708391701<39> × 278122726554927608421392646682775110116681922088002932901<57>(100.00%)
Φ900M(10) = 9999999000...<120> = 999999900000004999999899999998000000199999995000000000000002999999999999995000000199999997999999900000004999999900000001<120>(100.00%)
回复 支持 反对

使用道具 举报

 楼主| 发表于 2021-5-6 15:22 | 显示全部楼层
φ因子的结构形式
对于清一色正整数111…1而言,都存在一个φ因子,它可能是一个素数,也可能是一个合数;这个φ因子可能是清一色数本身,但一般来说它是清一色数的一个素因子或一个复合因子。
在某种意义上说,φn(10)因子就是循环周期等于n的素数或合数,在10进制下它的倒数循环节长度等于n。
仔细观察n=1—60的φ因子构成表:
Φ1(10) = 9 = 3^2
Φ2(10)= 11 = 11
Φ3(10)= 111 = 3 × 37
Φ4(10)= 101 = 101
Φ5(10)= 11111 = 41 × 271
Φ6(10)= 91 = 7×13
Φ7(10)=1111111=239×4649
Φ8(10)=10001=73×137
Φ9(10)=1001001=3×333667
Φ10(10)=9091=9091
Φ11(10)=11111111111<11>=21649×513239
Φ12(10)=9901=9901
Φ13(10)=1111111111111<13>=53×79×265371653
Φ14(10)=909091=909091
Φ15(10)=90090991=31×2906161
Φ16(10)=100000001=17×5882353
Φ17(10)=11111111111111111<17>=2071723×5363222357<10>
Φ18(10)=999001=19×52579
Φ19(10)=1111111111111111111<19>=1111111111111111111<19>
Φ20L(10)=3541=3541
Φ20M(10)=27961=27961
Φ21(10)=900900990991<12>=43×1933×10838689
Φ22(10)=9090909091<10>=11×23×4093×8779
Φ23(10)=11111111111111111111111<23>=11111111111111111111111<23>
Φ24(10)=99990001=99990001
Φ25(10)=100001000010000100001<21>=21401×25601×182521213001<12>
Φ26(10)=909090909091<12>=859×1058313049<10>
Φ27(10)=1000000001000000001<19>=3×757×440334654777631<15>
Φ28(10)=990099009901<12>=29×281×121499449
Φ29(10)=11111111111111111111111111111<29>=3191×16763×43037×62003×77843839397<11>
Φ30(10)=109889011=211×241×2161
Φ31(10)=1111111111111111111111111111111<31>=2791×6943319×57336415063790604359<20>
Φ32(10)=10000000000000001<17>=353×449×641×1409×69857
Φ33(10)=90090090090990990991<20>=67×1344628210313298373<19>
Φ34(10)=9090909090909091<16>=103×4013×21993833369<11>
Φ35(10)=900009090090909909099991<24>=71×123551×102598800232111471<18>
Φ36(10)=999999000001<12>=999999000001<12>
Φ37(10)=1111111111111111111111111111111111111<37>=2028119×247629013×2212394296770203368013<22>
Φ38(10)=909090909090909091<18>=909090909090909091<18>
Φ39(10)=900900900900990990990991<24>=900900900900990990990991<24>
Φ40(10)=9999000099990001<16>=1676321×5964848081<10>
Φ41(10)=11111111111111111111111111111111111111111<41>=83×1231×538987×201763709900322803748657942361<30>
Φ42(10)=1098900989011<13>=7×127×2689×459691
Φ43(10)=1111111111111111111111111111111111111111111<43>=173×1527791×1963506722254397<16>×2140992015395526641<19>
Φ44(10)=99009900990099009901<20>=89×1052788969<10>×1056689261<10>
Φ45(10)=999000000999000999999001<24>=238681×4185502830133110721<19>
Φ46(10)=9090909090909090909091<22>=47×139×2531×549797184491917<15>
Φ47(10)=11111111111111111111111111111111111111111111111<47>=35121409×316362908763458525001406154038726382279<39>
Φ48(10)=9999999900000001<16>=9999999900000001<16>
Φ49(10)=1000000100000010000001000000100000010000&#172;001<43>=505885997×1976730144598190963568023014679333<34>
Φ50(10)=99999000009999900001<20>=251×5051×78875943472201<14>
Φ51(10)=90090090090090090990990990990991<32>=613×210631×52986961×13168164561429877<17>
Φ52(10)=990099009900990099009901<24>=521×1900381976777332243781<22>
Φ53(10)=11111111111111111111111111111111111111111111111111111<53>=107×1659431×1325815267337711173<19>×47198858799491425660200071<26>
Φ54(10)=999999999000000001<18>=70541929×14175966169<11>
Φ55(10)=9000090000990009900099900999009999099991<40>=1321×62921×83251631×1300635692678058358830121<25>
Φ56(10)=999900009999000099990001<24>=7841×127522001020150503761<21>
Φ57(10)=900900900900900900990990990990990991<36>=21319×10749631×3931123022305129377976519<25>
Φ58(10)=9090909090909090909090909091<28>=59×154083204930662557781201849<27>
Φ59(10)=11111111111111111111111111111111111111111111111111111111111<59>=2559647034361<13>×4340876285657460212144534289928559826755&#172;746751<46>
Φ60L(10)=255522961=61×4188901
Φ60M(10)=39526741=39526741
…………
容易发现:
一、若n是素数,则φn就等于清一色本身,它可能是素数(如φ2、φ19、φ23),但一般是素数(如φ5=11111=41*271,φ7=1111111=239*4649)。
二、若n是奇素数的2倍,则φn就等于清一色数除以φ2*φn,如φ6=111111/(11*111)=91,φ10=1111111111/(11*11111)=9091,φ14=11111111111111/(11*1111111)=909091,……;
其结构形式是9090…9091。
三、若n是除3以外的奇素数的3倍,则φn就等于清一色数除以φ3*φn,如
φ15=111…1<15>/(111*11111)=90090991,
φ21=111…1<21>/(111*1111111)=900900990991<P12>,
φ33=111…1<33>/(111*111…1<11>)=90090090090990990991<C20>,……
其结构形式是900900…90990…990991(1节3数,中间夹着“90”)或900900…990991(1节3数)。
四、若n是除5以外的奇素数的5倍,则φn就等于清一色数除以φ5*φn,如
φ15=111…1<15>/(111*11111)=90090991,
φ35=111…1<35>/(11111*1111111)=900009090090909909099991<24>,
φ55=111…1<55>/(11111*111…1<11>)=9000090000990009900099900999009999099991<40>,……
其结构形式较复杂。
五、若n是奇素数的平方,则φn等于清一色数除以φn:
φ9=111111111/111=1001001=3*333667,
φ25=111…1<25>/11111=100001000010000100001<21>=21401*25601*182521213001<12>,
φ49=111…1<49>/1111111=1000000100000010000001000000100000010000&#172;001<43>=505885997×1976730144598190963568023014679333<34>,
……
六、φ20、φ60、φ100都由两个φ因子构成,一个L,一个M:
Φ20L(10)=3541=3541,    Φ20M(10)=27961=27961
Φ60L(10)=255522961=61×4188901,    Φ60M(10)=39526741=39526741

更多的规律请自行总结归纳!
回复 支持 反对

使用道具 举报

 楼主| 发表于 2021-5-12 14:50 | 显示全部楼层
太阳整除问题1
已知:整数a>0,c>0,k>0,m>0,n>0,t>0,v>0,c=5k
求整:( a^c+1)÷( a^k+1)÷(10m-1)≠n
求整:( a^c+1)÷( a^k+1)÷(10m+3)≠t
求整:( a^c+1)÷( a^k+1)÷(10m-3)≠v

简化一点,题目可变成:
(a^4k-a^3k+a^2k-a^k+1) ÷(10m-1)≠n
(a^4k-a^3k+a^2k-a^k+1) ÷(10m+3)≠t
(a^4k-a^3k+a^2k-a^k+1) ÷(10m-3)≠v

令a=10,k=1,2,3,4,5……,分子分别等于9091素数,99009901=3541*27961,999000999001=211*241*2161*9091,9999000099990001=1676321*5964848081,99999000009999900001=251*5051*78875943472201,……
令a=2,k=1,2,3,4,5……,分子分别等于16-8+4-2+1=11素数,256-64+16-4+1=205=5*41,4096-512+64-8+1=3641=11*331,65536-4096+256-16+1=61681素数,1048576-32768+1024-32+1=1016801=251*4051,……
令a=3,4,5……???????
回复 支持 反对

使用道具 举报

 楼主| 发表于 2021-5-12 14:50 | 显示全部楼层
改一改:
已知:整数a>0,c>0,k>0,m>0,n>0,t>0,v>0,c=3k
求整:( a^c+1)÷( a^k+1)÷(10m-1)≠n
求整:( a^c+1)÷( a^k+1)÷(10m+3)≠t
求整:( a^c+1)÷( a^k+1)÷(10m-3)≠v

简化一点,题目可变成:
(a^2k-a^k+1) ÷(10m-1)≠n
(a^2k-a^k+1) ÷(10m+3)≠t
(a^2k-a^k+1) ÷(10m-3)≠v

令a=10,k=1,2,3,4,5……,分子分别等于91=7*13, 9901素数, 999001=19*52579, 99990001素数, 9999900001 =7*13*211*241*2161,……
令a=2,k=1,2,3,4,5……,分子分别等于4-2+1=3素数, 16-4+1=13素数, 64-8+1=57=3*19, 256-16+1=241素数, 1024-32+1=993=3*331,……
改为c=3a后,分子可被(10m-1)、(10m+3)、(10m-3)整除。
回复 支持 反对

使用道具 举报

 楼主| 发表于 2021-5-12 14:51 | 显示全部楼层
太阳整除问题2
已知:整数a>0,c>0,k>0,m>0,n>0,t>0,u>0,v>0,y>0,c=2k,k=2m+n,m=2n,c=5m
求证1:(a^c+1-a^k)÷(a^m+1-a^n)÷(10t-1)≠u
求证2:(a^c+1-a^k)÷(a^m+1-a^n)÷(10t+3)≠v
求证3:(a^c+1-a^k)÷(a^m+1-a^n)÷(10t-3)≠y

简化一点,题目可变成:
(a^10n-a^5n+1) ÷(a^2n-a^n+1) ÷(10t-1)≠u
(a^10n-a^5n+1) ÷(a^2n-a^n+1) ÷(10t+3)≠v
(a^10n-a^5n+1) ÷(a^2n-a^n+1) ÷(10t-3)≠y

令a=10,n=1,2,3,4,5……,
(a^10n-a^5n+1)=9999900001,99999999990000000001,999999999999999000000000000001,9999999999999999999900000000000000000001,99999999999999999999999990000000000000000000000001……
(a^2n-a^n+1)=91,9901,999001,99990001,9999900001……
(a^10n-a^5n+1) ÷ (a^2n-a^n+1)= 109889011=211*241*2161,10099989899000101=61*4188901*39526741,1000999998998999000001001=29611*3762091*8985695684401,100009999999899989999000000010001素数,10000099999999989999899999000000000100001素数……

令a=2,n=1,2,3,4,5……,
(a^10n-a^5n+1)分别等于1024-32+1=993=3*331,1048576-1024+1=1047553= 13*61*1321,1073709057=3*19*18837001,1099510579201=241*4562284561,1125899873288193=3*331*1133836730401,……
(a^2n-a^n+1)分别等于4-2+1=3,16-4+1=13,64-8+1=57=3*19,256-16+1=241,1024-32+1=993=3*331,……
分别相除等于331,61*1321,18837001,4562284561,1133836730401,……

令a=3,4,5……???????
回复 支持 反对

使用道具 举报

 楼主| 发表于 2021-5-12 14:51 | 显示全部楼层
改一改:
已知:整数a>0,c>0,k>0,m>0,n>0,t>0,u>0,v>0,y>0,c=2k,k=2m+n,m=2n,c=3m
求证1:(a^c+1-a^k)÷(a^m+1-a^n)÷(10t-1)≠u
求证2:(a^c+1-a^k)÷(a^m+1-a^n)÷(10t+3)≠v
求证3:(a^c+1-a^k)÷(a^m+1-a^n)÷(10t-3)≠y

简化一点,题目可变成:
(a^6n-a^3n+1) ÷(a^2n-a^n+1) ÷(10t-1)≠u
(a^6n-a^3n+1) ÷(a^2n-a^n+1) ÷(10t+3)≠v
(a^6n-a^3n+1) ÷(a^2n-a^n+1) ÷(10t-3)≠y

令a=10,n=1,2,3,4,5……,
(a^6n-a^3n+1)=999001,999999000001,999999999000000001,999999999999000000000001,999999999999999000000000000001……
(a^2n-a^n+1)=91,9901,999001,99990001,9999900001……
(a^6n-a^3n+1) ÷ (a^2n-a^n+1)= 999001/91不能整除,999999000001/9901不能整除,999999999000000001/999001不能整除,999999999999000000000001/99990001不能整除,999999999999999000000000000001/9999900001不能整除……

令a=2,n=1,2,3,4,5……,
(a^6n-a^3n+1)分别等于64-8+1=57=3*19,4096-64+1=4033= 37*109,261633=3*87211,16773121=433*38737,1073709057=3*19*18837001,……
(a^2n-a^n+1)分别等于4-2+1=3,16-4+1=13,64-8+1=57=3*19,256-16+1=241,1024-32+1=993=3*331,……
分别相除除第一式可整除外,其余各式都不能整除,……
改换条件后不能整除,更谈不上有没有(10m-1)、(10m+3)、(10m-3)因子的问题。
回复 支持 反对

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

Archiver|手机版|小黑屋|数学中国 ( 京ICP备05040119号 )

GMT+8, 2025-7-18 05:05 , Processed in 0.101224 second(s), 14 queries .

Powered by Discuz! X3.4

Copyright © 2001-2020, Tencent Cloud.

快速回复 返回顶部 返回列表