|

楼主 |
发表于 2021-5-12 14:51
|
显示全部楼层
太阳整除问题2
已知:整数a>0,c>0,k>0,m>0,n>0,t>0,u>0,v>0,y>0,c=2k,k=2m+n,m=2n,c=5m
求证1:(a^c+1-a^k)÷(a^m+1-a^n)÷(10t-1)≠u
求证2:(a^c+1-a^k)÷(a^m+1-a^n)÷(10t+3)≠v
求证3:(a^c+1-a^k)÷(a^m+1-a^n)÷(10t-3)≠y
简化一点,题目可变成:
(a^10n-a^5n+1) ÷(a^2n-a^n+1) ÷(10t-1)≠u
(a^10n-a^5n+1) ÷(a^2n-a^n+1) ÷(10t+3)≠v
(a^10n-a^5n+1) ÷(a^2n-a^n+1) ÷(10t-3)≠y
令a=10,n=1,2,3,4,5……,
(a^10n-a^5n+1)=9999900001,99999999990000000001,999999999999999000000000000001,9999999999999999999900000000000000000001,99999999999999999999999990000000000000000000000001……
(a^2n-a^n+1)=91,9901,999001,99990001,9999900001……
(a^10n-a^5n+1) ÷ (a^2n-a^n+1)= 109889011=211*241*2161,10099989899000101=61*4188901*39526741,1000999998998999000001001=29611*3762091*8985695684401,100009999999899989999000000010001素数,10000099999999989999899999000000000100001素数……
令a=2,n=1,2,3,4,5……,
(a^10n-a^5n+1)分别等于1024-32+1=993=3*331,1048576-1024+1=1047553= 13*61*1321,1073709057=3*19*18837001,1099510579201=241*4562284561,1125899873288193=3*331*1133836730401,……
(a^2n-a^n+1)分别等于4-2+1=3,16-4+1=13,64-8+1=57=3*19,256-16+1=241,1024-32+1=993=3*331,……
分别相除等于331,61*1321,18837001,4562284561,1133836730401,……
令a=3,4,5……???????
|
|