|

楼主 |
发表于 2021-9-30 12:29
|
显示全部楼层
4 外尔的哲学成就
哥廷恩的数学传统是包括哲学的。构建数学的基础,应该是哲学性的劳动。外尔熟悉古希腊哲学和德国古典哲学,大学时选修过胡塞尔的哲学课,据信他对物理的处理方式多基于胡塞尔的现象学哲学。外尔所著的Was is Materie?, Raum-Zeit-Materie,Philosophie der Mathematik und Naturwissenschaft(数学和自然科学的哲学),以及Das Kontinuum (连续统) [7]都是哲学味十足的名篇。后人编纂的Mind and Nature (思维与自然) 收录的也是外尔的一些哲学思考。
在1918年的Das Kontinuum一书中,外尔使用罗素 (Bertrand Russell, 1872-1970) 的分支类型论 (ramified theory of types) 的较低层次发展了谓词分析的逻辑,他实际上是发展了经典运算的大部,但他既不使用选择公理也不使用反证,还避免使用康托 (Georg Cantor,1845-1918) 的无限集合。这期间外尔采用的是费希特 (Johann Gottlieb Fichte,1762-1814) 的构造主义。在连续统中,可构造的点是分立的存在,而我们需要的不是那种作为点之集团的连续统,应该构造同物理意义自恰的连续统。该书出版后, 外尔转向了布劳威尔 (L. E. J. Brouwer, 1881–1966) 的直觉主义。后来,外尔又觉得布劳威尔的直觉主义对数学施加了太强的限制。1921年,外尔写了“关于数学新的基础危机”一文,在数学界引起了极大的骚动。约在1928年后,外尔就公开认为数学的直觉主义同他对现象学哲学的热情不相容。晚年的外尔认为数学是“符号构造(symbolic construction)”。
1949年,外尔放弃了数学的直觉主义的价值。在1949年英文版Philosophy of mathematics and natural science中,外尔写道:
"Mathematics with Brouwer gains its highest intuitive clarity. He succeeds in developing the beginnings of analysis in a natural manner, all the time preserving the contact with intuition much more closely than had been done before. It cannot be denied, however, that in advancing to higher and more general theories the inapplicability of the simple laws of classical logic eventually results in an almost unbearable awkwardness. And the mathematician watches with pain the greater part of his towering edifice which he believed to be built of concrete blocks dissolve into mist before his eyes.
“数学从布劳威尔那里获得了高度的直觉上的清晰。他成功地以一种自然的方式开启了分析的发展,一直保持住了比从前更加紧密的同直接的接触。不可否认的是,为了寻求更加高级、更具一般意义的理论,运用经典逻辑的简单法则最终会导致令人难以容忍的糟糕局面。数学家痛苦地看着他以为是用混凝土砖建立起来的大厦之大部眼睁睁地消解在迷雾中" 。
德语的Philosophie der Mathematik und Naturwissenschaft出版于1927年,那一年外尔已对相对论的几何做了充分的研究、参与了1926年薛定谔量子力学波动方程解氢原子问题,泡利写出了他的两分量量子力学波动方程,而狄拉克的四分量相对论量子力学波动方程还要再等来年。在这本书里,外尔谈了他关于数学逻辑、公理、连续统、无限、几何[8]、时空、方法论、物质以及因果律等观念,而这些在笔者看来,是理解量子力学和相对论的关键。从笔者个人经历来看,缺乏对这些基本观念的思考是大学阶段学习量子力学和相对论时感到困惑的缘由。
外尔的科学哲学是对我们科学家有益的学问,如他所言,die Beschaftigung mit der Philiosophie der Wissenschaften die Kenntnis der Wissenschaft selbst voraussetzt (拿科学哲学说事儿要以科学知识本身为前提)。如同莱布尼兹,对于外尔来说,数学是其哲学体系的有机组成部分。因为首先是个职业科学家,哲学家外尔的著作中多有实践痕迹的表述,或者说,他的哲学论述是技术性的。略举几例,供读者品味。
Wir haben die Wahrheit nicht, sondern sie will durch Handeln gewonnen sein
不是我们拥有真理,而是它可通过实践被获得;
Eine wahrhaft realistische Mathematik sollte, parallel zur Physik, als ein Zweig der theoretischen Konstruktion der einen realen Welt aufgefasst warden
真正现实的数学应该作为关于现实世界的理论构造的一个分支,与物理平行,来理解;
Tatsachlich schreibt die allgemeine Relativitatstheorie nicht die Topologie der Welt vor, und so mag es kommen, dass die Welt nicht bloss nach dem Unendlichen zu, sondern auch nach innen hinein unerreichbar Saume tragt
实际上,广义相对论并没有规定世界的拓扑,故而可能是这样,世界不只是朝着无限之外也可能朝着内里携带着不可抵达的迟疑。
此书包含大量数学与物理的基础思想,有一定数学和物理知识储备的读者不妨读读,此处恕不详述。
5 多余的话
外尔作为一个职业数学家,但却对量子力学、相对论和规范场论都有根本性的贡献,原因不外有二:其一,这确实是理论物理,撞到他这个真数学家的枪口上了;其二,他和量子力学和相对论的物理学家奠基者们有亲密的接触。外尔研究广义相对论,因为爱因斯坦是他在瑞士联邦理工的同事,扩展作为广义相对论基础的微分几何的努力最终导向了规范场论的创立,而碰巧那中间的关键一步来自量子力学。
外尔1924年出版了具有哲学意味实际上是学不分科的Was ist Materie? (什么是物质?) 一书,这是一个学会思考了的学者对自然存在的思考。不知道是不是受这本书的启发,反正20年后薛定谔出版了 What is life? (什么是生命?)一书,一样的是学不分科式的著作,一样的是一个学会思考了的学者对自然存在的思考。可能薛定谔的书更贴近生活吧,故What is life? 比Was ist Materie? 更为流行。然而,论学问,尤其是涉及到渊源,笔者可能会给予Was ist Materie?以更高的评价。当然,把这两本书放到一起看会带来更大的收获。
至于规范场论,规范场论始于外尔1918年的“引力与电”一文,其初始动机是扩展广义相对论用的微分几何。希尔伯特第一个写出广义相对论场方程,比爱因斯坦早5天。外尔是希尔伯特的学生,是爱因斯坦的同事, 好象就是通过外尔的介绍,希尔伯特才邀请爱因斯坦于1915年夏去哥廷恩讲学的。可以说,外尔参与广义相对论的进一步发展是自然而然的事儿。规范场论其后发展的硬核思想基础是1918年的诺特定理。诺特1915年应克莱因和希尔伯特之邀到哥廷恩大学工作。虽然外尔和诺特可能在哥廷恩没有交集,但无疑地他们都是深受克莱因和希尔伯特影响的哥廷恩学派顶级人物。1918年,诺特的“不变的变分问题” 和外尔的“引力与电”同时出现绝非偶然,是数学物理史上值得关注的大事件。
1954年出现的杨-米尔斯理论是对规范场论的提升与拓展。这里的主角杨振宁先生曾谈到: “…当我还是中学生的时候,就从父亲那里接触到群论的基本原理,也常常被父亲书架上的一本斯派泽关于有限群的书中的美丽插图所迷住。” 看看,人家是在中学生时代就接触到了群论,而且是通过斯派泽(Andreas Speiser,1885-1970)的书籍。群论是相对论、量子力学和规范场论的基础,先通群论对学习理论物理的益处,杨振宁先生可为一例。有趣的是,外尔在1937年的Symmetry一书的序言中赫然写道:
“Andreas Speiser's Theorie der Gruppen von endlicher Ordnung and other publications by the same author are important for the synopsis of the aesthetic and mathematical aspects of the subject……”
斯派泽的有限群理论以及该作者的其他著述对于(对称性)这一主题的美学与数学方面的概览特别重要。
杨振宁先生后来发展了规范场论,看来不是偶然的。
罗嗦这么多,我特别想说,一个人要成为大学者,成长的环境太重要了。欲做学问者,须到学问家窝里去。如果你不明白这个道理,请好好理解维也纳圈子 (Viena circle) 是什么意思。外尔的成就是在哥廷恩以外做出来的,可他依然是哥廷恩数学传统的标志性人物。在德国诗人海涅 (Heinrich Heine, 1797-1865) 笔下,哥廷恩是一个以香肠和大学而闻名的城市。这个城市睥睨天下的气质,可以从刻在老市政厅入口处的一句拉丁语口号看出: “Extra Gottingam non est vita, si est vita non est ita (哥廷恩以外没有生活,有生活那也不是这里那样的)。在外尔求学的时代,其导师希尔伯特是数学的旗帜,纯粹思想的神龛(shrine of pure thought ),至于“全世界想学数学的人们打起背包,到哥廷恩去,那里有希尔伯特”的噱头,虽说出处可疑,毕竟有其发生的现实基础。第二次世界大战结束前,美英法盟军没有轰炸哥廷恩,算是强盗有文化的案例,也是因为哥廷恩太过令人肃然起敬了。
一个人能成为学术巨擘不是偶然的。大抵说来,他应该生来聪颖过人,导师也是学术巨擘级的,能教他深入的学问,引导他到学问的前沿。由此看来,老师们要不遗余力地教多、教深,才算是合格的,这也是一个教师的起码良知。至于学生们能走多远,那要看学生们自己的造化。成巨擘的人,心思只可在学问本身。这样看来,他还应该是富足的,物质上与精神上都富足,心无旁骛,不会为了生活所迫违心去做根本算不上研究的研究。
关于数学和物理的关系,我总觉得一个人只有实现了物理学家and数学家的运算才可能实现理解数学or物理的结果。实际上,从牛顿、拉格朗日、欧拉、贝努里们、哈密顿、格拉斯曼、庞加莱、希尔伯特、外尔、诺特到眼前的阿诺德、阿提亚、彭罗斯等人,一个大数学家没有对物理学的基础性贡献简直是不可想象的。反过来,好的物理学家,如狄拉克、薛定谔、钱德拉塞卡、李政道先生、杨振宁先生等,其数学水平也不是一般意义的数学爱好者能比的。外尔的一句“In some way Euclid’s geometry must be deeply connected with the existence of the spin representation (欧几里得几何肯定以某种方式同自旋表示的存在深度关联) ”让我浑身一颤,当然这主要是因为我数学差的原因。
外尔是数学家、物理学家和哲学家,也是文采斐然、风格独特的作家,其文笔优美、顽皮,有人甚至夸奖他的文风是诗意的。多么深沉、严肃的内容,外尔都能写出优美的文字来,并且灌注入思想,因此让人觉得读来是个享受。外尔1939年在普林斯顿出版The classical groups时在序言中为自己的英语不流利而道歉:
The gods have imposed upon my writing the yoke of a foreign tongue that was not sung at my cradle.
“Was dies heissen will, weiss jeder,
Der im Traum pferdlos geritten.”
诸神给我的写作强加上了枷锁,那是我在摇篮中未曾听过歌声的语言。“那是什么样的感觉呢,梦到自己胯下无马还纵横驰骋的人都知道。”
这让英语是native language的人都无地自容。同一年,谈论抽象代数同拓扑学的竞争,外尔写道:
“In these days the angel of topology and the devil of abstract algebra fight for the soul of each individual mathematical domain."
这些日子里,拓扑学的天使和抽象代数的魔鬼在为每一块数学地盘的灵魂而打斗!
嗯, 天使,魔鬼,还为了灵魂在打斗,这数学就显得比较热闹。
不知道数学、物理和哲学的思想在外尔的灵魂里是怎样打斗的,激烈而且和谐?
参考文献
1. Emmy Noether, Invariante Variationsprobleme (不变的变分问题), Nachr. D. Konig. Gesellsch. D. Wiss. Gottingen 918, 235–57 (1918).
2. Andreas Speiser,Die Mathematische Denkweise,Springer(1952).
3. Hermann Weyl, Invariants, Duke Mathematical Journal 5 (3),489–502(1939).
4. Hermann Weyl, Gruppentheorie und Quantenmechanik (群论与量子力学),S. Hirzel (1928). 英文版为The Theory of Groups and Quantum Mechanics, Dover (1931).
5. Hermann Weyl, Gravitation and the electron, PNAS 15 (4), 323-334(1929).
6. Hermann Weyl, Elektron und Gravitation I. (电子与引力 I.), Z. Phys. 56, 330-352(1929).
7. Hermann Weyl, uber die neue Grundlagenkrise der Mathematik (关于数学新的基础危机), Springer Mathematische Zeitschrift10, 45-66 (1921).
8. Hermann Weyl, Mind and Nature, Princeton University Press (2009).
9. Hermann Weyl, Philosophy of mathematics and natural science, Princeton University Press (1949).
10. Eugene Wigner, Gruppentheorie und ihre Anwendungen auf die Quantenmechanik der Atomspektren (群论及其在原子谱量子力学中的应用), Vieweg (1931). 英文版为Group Theory: And its Application to the Quantum Mechanics of Atomic Spectra, Academic Press (1959).
11. John von Neumann, Mathematische Grundlagen der Quantenmechanik, Springer (1932).
12. Michael Atiyah, Hermann Weyl 1885-1955, The national academy press (2002).
注释
[1] 我最佩服的就是赫尔曼.外尔——迈克尔.阿提亚
[2] 中文译本名为《实用理性批判》,但这容易让笔者这样的糊涂人理解为实用的‘理性批判’。此处故意点明这是关于‘实用理性’之批判。
[3] Quantenmechanik, 量子力学,一词最早出现于1924年
[4] 海森堡因对矩阵力学的贡献而作为量子力学奠基人之一而闻名。实际上,他提出同位旋和交换相互作用的概念才更见水平。
[5] 忽然明白某些地方的量子力学的教与学差在哪儿了。
[6] 狄拉克说是自己硬推导出来的。
[7] 连续统的译法涉嫌同义反复。‘统’字本身就是连续关系的意义
[8] 虽然初二就学过,但笔者打死也不敢说自己会欧几里得几何。牛顿能用平面几何证明平方反比力下行星运动的轨迹是圆锥曲线,外尔从欧几里得几何能看到自旋表示。信誓旦旦敢说会的,都是因为知道的少。
[9] 球谐函数,听着莫名其妙吧?Spherical harmonic function, 其实是球安装函数,即用这样的函数可以凑出一个球对称的分布来。Harmony, 本义是安装到位。 |
本帖子中包含更多资源
您需要 登录 才可以下载或查看,没有帐号?注册
x
|