|
本帖最后由 elim 于 2021-12-26 04:51 编辑
题:设 \(p={\small\displaystyle\sum_{k=1}^n\frac{(-1)^{k-1}}{k}}x^k\), 试证\(\,{\small\displaystyle\sum_{m=1}^n\frac{p^m}{m!}}=x+o(x^n).\)
证:\(\because\;{\frac{d}{dx}}p={\frac{1-(-x)^n}{1+x}},\)
\(\quad\small\displaystyle\lim_{x\to 0}\frac{-x+\sum_{m=1}^n\frac{p^m}{m!}}{x^n}\;\overset{L'Hospital}{=\hspace{-2px}=\hspace{-2px}=}\lim_{x\to0}\frac{-1+\frac{1-(-x)^n}{1+x}(1+\sum_{m=1}^{n-1}\frac{p^m}{m!})}{nx^{n-1}}\)
\(\small=\displaystyle\lim_{x\to 0}\frac{-x+\sum_{m=1}^{n-1}\frac{p^m}{m!}}{nx^{n-1}}=\cdots=\lim_{x\to 0}\frac{-x+p}{n!x}=0.\quad\square\) |
|