|
提示:设AB=b,BC=a,CE=x,CD=y,在△ABC中,有b/sin(60°-2α)=a/sin(2α)=(y+a)/sin120°,
故,b=asin(60°-2α)/sin(2α), 且y=asin120°/sin(2α)-a.
又在△CDE中,有x/sinα=y/sin(60°-α),即x=ysinα/sin(60°-α),
故x+y=y[sinα/sin(60°-α)+1]=[asin120°/sin(2α)-a].[sinα/sin(60°-α)+1]=asin(60°-2α)/sin(2α).
所以,b=x+y. |
|