|
本帖最后由 elim 于 2022-4-12 17:02 编辑
首先建立一个极限等价关系\(\,\ln(an+b)\sim \ln n.\;\;(a > 0,\; b\in\mathbb{R})\)
这是因为 \(\small\dfrac{\ln(a/2)+\ln n}{\ln n}=\dfrac{\ln\large\frac{an}{2}}{\ln n}<\dfrac{\ln(an+b)}{\ln n}<\dfrac{\ln(2a)+\ln n}{\ln n}\)
对充分大的 \(n\)成立。
我们有 \(\small\dfrac{(H_{n+2}+\cdots+H_{2(n+1)})-(H_{n+1}+\cdots H_{2n})}{(n+1)H_{n+1}-nH_n}\)
\(\small=\dfrac{H_{2n+2}+H_{2n+1}-H_{n+1}}{\frac{n}{n+1}+H_{n+1}}=\dfrac{\ln 2+\gamma_{2n+2}+\gamma_{2n+1}-\gamma_{n+1}+\ln(2n+1)}{\frac{n}{n+1}+\ln(n+1)+\gamma_{n+1}}\)
\(\to 1\;(n\to\infty)\) 其中 \(\gamma_k = H_k-\ln k\to \gamma\)(Euler \( \gamma\))
据 Stolz 定理, \(\displaystyle\lim_{n\to\infty}\small\frac{H_{n+1}+\cdots H_{2n}}{nH_n}=1.\quad\square\) |
|