|

楼主 |
发表于 2022-5-31 14:40
|
显示全部楼层
A=0, 0, 10, 36, 322, 2832, 27954, 299260, 3474482, 43546872, 586722162,
8463487844, 130214368530, 2129319003680, 36889393903794, ...........
\(\displaystyle a(n)=\sum_{i=1}^{n-1}\sum_{j=1}^i\frac{(i-1)!((n-i-1)!n)^2\cos(i\pi)2^j}{j!(j-1)!(i-j)!(n-i-j)!}+n!+2n\cos(n\pi)\)
B=0, 0, 10, 60, 462, 3920, 36954, 382740, 4327510, 53088888, 702756210,
9988248956, 151751644590, 2454798429600, 42130249479562, ...........
\(\displaystyle a(n)=\sum_{i=1}^{n-1}\sum_{j=0}^{i-1}\frac{(i-1)!(n-i)!(n-i-1)!n\cos(i\pi)2^{j+1}}{j!(j+1)!(i-j-1)!(n-i- j-1)!}+n!\)
\(\frac{A}{B}=\frac{1}{1},\ \frac{3}{5},\ \frac{23}{33},\ \frac{177}{245},\ \frac{1553}{2053},\ \frac{14963}{19137},\ \frac{ 157931}{196705},\ \frac{
1814453}{2212037},\ \frac{7522079}{9009695},\ \frac{302267423}{356723177},\ \frac{4340478951}{5058388153},\ \frac{1209840343}{1394771835}, \)
\( 分子=RecurrenceTable[{a[3]= 0, a[4]= 0, a[5]= 1, a[6]= 3, a[7]= 23}, \)
\(a[n]=\frac{(n^3 - 8 n^2 + 18 n - 21) a[n - 1] + 4 n (n - 5) a[n - 2] - 2 (n - 6) (n^2 - 5 n + 3) a[n - 3] +
(n^2 - 7 n + 9) a[n - 4] + (n - 5) (n^2 - 5 n + 3) a[n - 5]}{n^2 - 7 n + 9}\)
\(分母=RecurrenceTable[{a[3] = a[4] = 0, a[5] = 1, a[6] = 5}, \)
\(a[n] = n a[n - 1] - (n - 5) a[n - 2] - (n - 4) a[n - 3] + (n - 4) a[n - 4]\) |
|