|
主帖还是有实用价值。
\(回到主帖,运用毕达哥拉斯,可列出(1),(2),在这里,HC=5+x,∠B=2\theta\)
\((5+x)^2=(5-2x-x)^2+\big(\frac{10\cos(\theta)\sin(90^\circ)}{\cos(2\theta)}-5\cos(\theta)-\frac{x\cos(45^\circ-\theta)}{\sin(45^\circ-\theta)}\big)^2\ \ \ \ (1)\)
\((5+x)^2=(5\cos(\theta)-x)^2+\big(\frac{10\cos(\theta)\sin(2\theta)}{\cos(2\theta)}-5\sin(\theta)-\frac{x\cos(45^\circ-\theta)}{\sin(45^\circ-\theta)}\big)^2\ \ \ \ (2)\)
\(对(1),(2),化简可得,其中:\displaystyle\frac{1}{\sin(\theta)}=\frac{5}{5-2x}\)
\(64x^5+625(139-8\sqrt{5x-x^2})x+7500\sqrt{5x-x^2}=400x^3+400(50-3\sqrt{5x-x^2})x^2+87500\)
\(\theta=0.46480320693925896618, x=1.3793827627950781678\) |
|