Daniel Spielman 最初是在耶鲁大学读本科,后在麻省理工学院读研究生,并于 1995 年获得 MIT 博士学位。他在 MIT 研究了保护通信免受干扰的方法,其中包括所谓的纠错码(error-correcting codes)。Robert Gallager 在 1963 年展示了如何用图(图指由线(边)连接的点(顶点)组成的数学对象)构建这些代码,但在 Daniel Spielman 的时代,这种方法在很大程度上被遗忘了。Daniel Spielman 和他的顾问 Michael Sipser 是为数不多的几个重新启用了该方法的人,他们利用名叫扩展图(expander graphs)的特殊图来创建新的代码。他们发明的代码为后来编码理论的许多研究奠定了基础。
Daniel Spielman:中学的时候,图书馆里有一本关于计算机编程的书。我读过那本书,书的内容对我来说几乎是有史以来最神奇的东西。那本书介绍了如何给机器人编程,也就是解释了如何对机器人的所有基本任务编程,然后想出某种组织方式把这些基本任务给组合起来。从那一刻起,我就想要一台电脑。有一天我的父母发现一个工程师在卖一台旧的Commodore电脑。而且我们不仅买到了电脑,还得到了这个工程师所有的杂志和书籍。我花了大量的时间阅读这些材料并学习编程。
Quanta Magazine:在孩童时代独自看书是一件挺困难的事,您是怎么熬过来的?
Daniel Spielman:我喜欢思考一切事情。我年轻的时候真的很喜欢思考,直到我有了一台电脑,我才有了可以花那么多时间思考的东西。我猜你会说,我是一个容易对事物着迷的人。其实是我喜欢为一件事努力的感觉。有时我确实会感到沮丧,但这并不能阻止我的兴趣。
但在 1992 年,六位计算机科学家在两篇论文中证明了存在一条检查账单的「捷径」。这两篇论文分别为:“证明的概率检验;NP 的一个新表征 (Probabilistic checking of proofs; a new characterization of NP)”和“近似问题的证明验证和难度(Proof verification and hardness of approximation problems)”。
Daniel Spielman:平滑分析是一个耗时很长的项目,至少当时感觉是这样的。有些时候尚华几乎就住在我们的公寓里。平滑分析确实来自于我和尚华之前做过的另一个研究项目,那个项目失败了,却意外开启了平滑分析的研究。
Quanta Magazine:您是如何开始平滑分析理论研究的?
Daniel Spielman:人们在实践中做了很多他们认为对自己有用的事情,但没有一个理论能解释这是为什么。我们试图理解其中一种算法,这个叫做单纯形法的算法得到了广泛使用。每个人都知道单纯形法有失败的例子,但单纯形法仍然在实践中运用地非常成功。我们试图解释这一现象。最终得出的结论是单纯形法是可行的,因为其失败的所有例子似乎都非常非常脆弱。
Daniel Spielman:我在麻省理工学院读研究生的时候,他是那里的老师。我们从那时起就开始一起做研究解决问题,而且我们的工作风格非常合契。你可以看到我办公室里有个沙发。我在麻省理工学院的办公室里有两个沙发。这意味着我和尚华都可以躺着工作,一整天都躺着思考问题,有想法的时候就站起来讨论。他很乐意花很多时间思考和谈论问题。和我一样,他也乐于研究那些我们可能解决不了的异常困难的问题。失败是我们研究问题的标准结果,即使我们已经致力于这项研究好几年了也可能失败。不过没关系。
图注:图(Graph)在现代计算机科学中是必不可少的,在 Spielman 的许多研究中也是如此。
3 学术难题
Quanta Magazine:这个问题有关对照试验:请问把人分成几个小组有什么难的?
Daniel Spielman:这样想吧。给你一枚硬币,抛 10 次看结果,即使结果是随机产生的,但我们也会看到其中的模式,比如可能会连续出现四个正面。如果只给我几个量来测量,比如年龄和性别,然后在 100 个人中随机分组,那么其中一个组的量就会有明显差异。完全随机几乎从来都不是正确的做法。
Quanta Magazine:所以您想要随机地走钢丝吗?
Daniel Spielman:我们称之为「艺术随机」。我们将艺术随机描述为在「完全随机和平衡你所关心的量之间的权衡」。如果你所衡量的因素(如年龄或性别)对结果有影响,哪怕是很小的影响,也最好需要对这些因素进行平衡。我最初认为我们需要平衡所有因素,但事实证明只需要一点点平衡和大量随机性。但这是最近研究得出的结论。大多数结果只是告诉我们存在好的划分,但没有告诉我们如何实现这些划分。而 Nikhil Bansal 在 2009 年的一个突破性成果为我们提供了有效的算法。在我们的工作中,我们正在利用理论计算机科学的结果,用有效的算法来实现这些平衡的划分。人们以前没想过用这些。
Quanta Magazine:考虑到失败似乎经常发生,那您为什么一开始就要解决这些困难的问题?
Daniel Spielman:这是一场赌博。如果我能解决这些问题,我就会非常积极地去做研究,并且会满怀激情地四处演讲。如果不是这样的问题,我就不想为之投入精力。我没有动力花时间在其他的问题上面。我也觉得所有的研究都很困难——至少对我来说是这样。即使看起来很简单的问题,我仍然认为很难解决。所以,既然已经要去做一件很难的事情,为什么不做一些影响很大的事情,或者其他人也认为很难的事情呢?