|

楼主 |
发表于 2022-8-2 10:05
|
显示全部楼层
题:求 \(\lfloor x\rfloor(x-\lfloor x\rfloor)=2022 x\) 的非零解.
解:令 \(n=\lfloor x\rfloor,\;\delta=x-n,\) 则 \(n\delta = 2022(n+\delta),\;\delta =- \large\frac{2022n}{2022-n}.\)
由 \(0\le\delta < 1\) 得 \(n< 0< -2021n< 2022\) 即 \(n=-1,\,\delta=\large\frac{2022}{2023}\)
\(\therefore\quad x = n+\delta = -\large\frac{1}{2023}.\quad\small\square\) |
|