|
\(f(x)=5x^4+4x^3+3x^2+2x+1,~f'(x)=20x^3+12x^2+6x+2\)
\(f(i)=5-4i-3+2i+1=3-2i,~f'(i)=-20i-12+6i+2=-10-14i\)
\(f(-i)=3+2i,~f'(-i)=-10+14i\)
\(\displaystyle \sum\frac{1}{x^2+1}=\sum\frac{1}{(x-i)(x+i)}
=\frac{1}{2i}\left(\sum\frac{1}{-i-x}-\sum\frac{1}{i-x}\right)\)
\(\displaystyle =\frac{1}{2i}\left(\frac{f'(-i)}{f(-i)}-\frac{f'(i)}{f(i)}\right)
=\frac{(-10+14i)(3-2i)-(-10-14i)(3+2i)}{2i(3-2i)(3+2i)}
=\frac{62}{13}\) |
|