|

楼主 |
发表于 2022-9-4 13:23
|
显示全部楼层
本帖最后由 马奕琛 于 2022-9-4 16:59 编辑
\(问题二证明:\)
\(a_{n}=\displaystyle\sum_{k=1}^{n}\dfrac {1}{k^{2}}=\displaystyle\sum_{k=1}^{+\infty}\dfrac {1}{k^{2}}-\displaystyle\sum_{k=n+1}^{+\infty}\dfrac {1}{k^{2}}=\dfrac {π^{2}}{6}-\displaystyle\sum_{k=n+1}^{+\infty}\dfrac {1}{k^{2}},\)
\(注意到\int_{n}^{+\infty}\dfrac {1}{(x+1)^{2}}dx<\displaystyle\sum_{k=n+1}^{+\infty}\dfrac {1}{k^{2}}<\int_{n}^{+\infty}\dfrac {1}{x^{2}}dx,\)
\(则\displaystyle\sum_{k=n+1}^{+\infty}\dfrac {1}{k^{2}}=\dfrac {1}{n+θ},0<θ<1,\)
\(则a_{n}=\dfrac {π^{2}}{6}-\dfrac {1}{n+θ_{1}},同理可得b_{n}=\dfrac {π^{2}}{8}-\dfrac {1}{4n-2\theta_{2}},其中\theta_{1,2}∈(0,1),\)
\(则\displaystyle \lim_{n \to \infty}n(\dfrac {b_{n}}{a_{n}}-\dfrac {3}{4})=\displaystyle \lim_{n \to \infty}n(\dfrac {\dfrac {3}{n+\theta_{1}}-\dfrac {1}{n-\dfrac {1}{2}\theta_{2}}}{\dfrac {2π^{2}}{3}-\dfrac {4}{n+\theta_{1}}})=\dfrac {3-1}{\dfrac {2π^{2}}{3}}=\dfrac {3}{π^{2}}\) |
|