|
本帖最后由 马奕琛 于 2022-9-11 20:52 编辑
\(解:\)
\(设f(x,y,z)=cos^{2}(x-y)+cos^{2}(y-z)+cos^{2}(x-z)\)
\(不妨求f(x,y,z)在约束条件x+y+c=π(x,y,z>0)下的极小值\)
\(则f_x+\lambda=0,f_y+\lambda=0,f_z+\lambda=0\)
\(不难解出\lambda=0,,则sin(2x-2y)=sin(2y-2z)=sin(2z-2x)\)
\(解出:x=y=z=\dfrac {π}{3},或x=\dfrac {2π}{3},y=\dfrac {π}{6},z=\dfrac {π}{6}(x,y,z可轮换)\)
\(验证得f(\dfrac {π}{3},\dfrac {π}{3},\dfrac {π}{3})=3,f(\dfrac {2π}{3},\dfrac {π}{6},\dfrac {π}{6})=1\)
\(则f(x,y,z)最小值为1\)
|
|