数学中国

 找回密码
 注册
搜索
热搜: 活动 交友 discuz
查看: 2930|回复: 3

实数的 定义公理及其应用

[复制链接]
发表于 2022-11-3 09:48 | 显示全部楼层 |阅读模式
定义6(理想实数的非形式化定义): 现实数量的大小(包括现实线段、时段长度、角度大小)具有可变性、测不准性;但在相对性与暂时性的忽略微小误差的抽象方法下,可以认为:每一个现实数量都有确定的大小。因此,可以提出:现实数量大小(例如线段、时段长度、角度大小)的没有误差的绝对准表达符号叫做理想实数(简称为实数)。其中不能用有理数绝对准表达的理想实数都叫无理数(例如:π与 )。公理1(实数公理):每一个理想实数 都存在着以它为趋向性极限值的康托尔的以有理数(包括十进小数)为项的基本数列,除0以外的每一个理想正实数 都存在唯一的满足条件 的,以n位十进小数 为通项的、理想实数 的全能不足近似值的康托儿基本数列,这个基本数列可以简写为无尽小数。但与文献[10]87页的:“称无尽小数为实数”的定义不同,根据通项满足的条件,就可以知道:无尽小数的趋向性极限才真正是理想实数。所有无尽小数都具有“①无尽是按照一定法则无限延续下去的意义;②无限延续是永远延续不到底的操作”的对立统一的两个性质。这种基本数列收敛于这个理想实数 。反之,每一个康托尔实数理论中基本数列(或称以有理数为项的柯西基本数列),都有无限延续下去的通项表达式,都存在一个唯一的理想实数 (简称为实数)为其极限,等价(也称全能近似相等)的康托儿基本数列的极限相同;而且全能近似数列具有永远算不到底的性质,只要算到满足具体问题的确定的具体误差界的足够准近似值就行了。
有了上述定义与公理就可以更好的阐述实数理论的有关问题,例如,根据上述定义,就应当提出圆周率的定义是:圆周长L与直径长D的比值,圆周率 等于直径为1的圆周长;根据上述公理,就可以提出 的针对误差界序列 的全能不足近似值无穷数列;这个数列的具体计算是:根据30度角的正弦、正切已有的全能不足近似值已有数字表示下,将圆周等分为为 等分之后,使用三角函数公式与半角公式算出的内接、外切多边形周长的数列,首先当m=0时,将圆周等分六等分,每一等分对应圆心角为 ,使用半角正弦、正切数值,得到圆内接、外切正六边形周长的准确到 的数字都是3。当m增大时,就会得到圆周率的准确到位数增多的十进小数近似值,例如,取m=18,,即将圆周分为1572864等分,计算出半圆心角正弦、正切后,得到圆内接、外切正六边形周长的准确到 的数字都是 ;电子计算机问世以后,法国人计算到50万位数字,茅以升在《十万个为什么》中指出“50万位小数完了吗?没完。永远算不完的,这是个‘无尽’”的数啊!”,这说明:这个全能不足近似值的无穷数列具有永远算不到底的性质,但这个数列可以可以写作:3.1,3.14,3.141,……的以十进小数为项的康托尔实数定义中的基本数列;虽然这个数列可以叫做无尽不循环小数,但它是数列性质的变数,它不能等于 ,它的趋向性极限才是圆周率 。这种叙述就消除了布劳威尔反例,改善了实数理论。
发表于 2022-11-3 10:43 | 显示全部楼层
jzkyllcjl 须知,你连加减乘除都搞不利索,无尽小数都不识,扯这么多有个屁用?你只会吃狗屎。
回复 支持 反对

使用道具 举报

发表于 2022-11-4 13:38 | 显示全部楼层
本帖最后由 任在深 于 2022-11-4 13:41 编辑

很完美的代数数π=3+√2/10,却被他扯的稀能?!

                -------但这个数列可以可以写作:3.1,3.14,3.141,……的以十进小数为项的康托尔实数定义中的基本数列;虽然这个数列可以叫做无尽不循环小数,但它是数列性质的变数,它不能等于 ,它的趋向性极限才是圆周率 。这种叙述就消除了布劳威尔反例,改善了实数理论。-----------

                       看来是彻底的完了!

         
回复 支持 反对

使用道具 举报

发表于 2022-11-6 05:44 | 显示全部楼层
曹俊云回头看看,对照看看,曹俊云是不是二百五?

定理:曹俊云是个无怨无悔死心塌地的资深二百五。
证明:在曹俊云所说的曹俊云所谓的“改革”“依赖真理”“会成功”的前提下,曹俊云半途而废,就是曹俊云愚蠢!曹俊云就是二百五!
“恩格斯的一段话”、“茅以升的话”、对立统一、庄子的一尺之锤、幻想与现实、无穷是写不完、走不过去回头看看、实践、辩证法、太极图、曹俊云的小孙子及其教师、小学课本,形式逻辑与辩证逻辑等等都在帮助曹俊云或者支撑曹俊云的改革,如果曹俊云的的改革再停止不前或不成功,曹俊云就是扶不起的阿斗,曹俊云就是糊不上墙的烂泥巴,曹俊云就是二百五!
回复 支持 反对

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

Archiver|手机版|小黑屋|数学中国 ( 京ICP备05040119号 )

GMT+8, 2025-5-16 14:11 , Processed in 0.090917 second(s), 15 queries .

Powered by Discuz! X3.4

Copyright © 2001-2020, Tencent Cloud.

快速回复 返回顶部 返回列表